Adjoint composition operators on $H^2(\mathbb{U})$
induced by strongly outer regular rational selfmaps of \mathbb{U}

Paul Bourdon
Washington and Lee University
(Joint work with Joel Shapiro)

24 July 2008
A Riddle

How is the problem of choosing a symbol for a composition operator similar to Hamlet’s dilemma?
To ϕ or not to ϕ, that is the question.
Setting the Stage

Let ϕ denote a holomorphic function mapping the open unit disk \mathbb{D} into itself, let $H(\mathbb{D})$ be the space of holomorphic functions on \mathbb{D}, and let $C_\phi : H(\mathbb{D}) \to H(\mathbb{D})$ be given by $C_\phi f = f \circ \phi$.

Let $H^2(\mathbb{D}) = \{ f \in H(\mathbb{D}) : \sum_{n=0}^{\infty} |\hat{f}(n)|^2 < \infty \}$. Note $H^2(\mathbb{D})$ is a Hilbert space with inner product

$$\langle f, g \rangle = \sum_{n=0}^{\infty} \hat{f}(n)\hat{g}(n).$$

For $\alpha \in \mathbb{D}$, let $K_\alpha(z) = \frac{1}{1-\alpha z}$ be the reproducing kernel at the point α for $H^2(\mathbb{D})$:

$$\langle f, K_\alpha \rangle = f(\alpha) \quad \text{for all} \quad f \in H^2(\mathbb{D})$$

For an analytic function $\phi : \mathbb{D} \to \mathbb{D}$, Littlewood showed that C_ϕ, restricted to $H^2(\mathbb{D})$, is bounded.
Setting the Stage

- Let \(\phi \) denote a holomorphic function mapping the open unit disk \(\mathbb{U} \) into itself, let \(H(\mathbb{U}) \) be the space of holomorphic functions on \(\mathbb{U} \), and let \(C_\phi : H(\mathbb{U}) \to H(\mathbb{U}) \) be given by \(C_\phi f = f \circ \phi \).
- Let \(H^2(\mathbb{U}) = \{ f \in H(\mathbb{U}) : \sum_{n=0}^{\infty} |\hat{f}(n)|^2 < \infty \} \). Note \(H^2(\mathbb{U}) \) is a Hilbert space with inner product
 \[
 \langle f, g \rangle = \sum_{n=0}^{\infty} \hat{f}(n)\hat{g}(n).
 \]

- For \(\alpha \in \mathbb{U} \), let \(K_\alpha(z) = \frac{1}{1-\overline{\alpha}z} \) be the reproducing kernel at the point \(\alpha \) for \(H^2(\mathbb{U}) \) :
 \[
 \langle f, K_\alpha \rangle = f(\alpha) \quad \text{for all} \quad f \in H^2(\mathbb{U})
 \]
- For an analytic function \(\phi : \mathbb{U} \to \mathbb{U} \), Littlewood showed that \(C_\phi \), restricted to \(H^2(\mathbb{U}) \), is bounded.
Let ϕ denote a holomorphic function mapping the open unit disk \mathbb{U} into itself, let $H(\mathbb{U})$ be the space of holomorphic functions on \mathbb{U}, and let $C_\phi : H(\mathbb{U}) \rightarrow H(\mathbb{U})$ be given by $C_\phi f = f \circ \phi$.

Let $H^2(\mathbb{U}) = \{ f \in H(\mathbb{U}) : \sum_{n=0}^{\infty} |\hat{f}(n)|^2 < \infty \}$. Note $H^2(\mathbb{U})$ is a Hilbert space with inner product

$$\langle f, g \rangle = \sum_{n=0}^{\infty} \hat{f}(n)\overline{\hat{g}(n)}.$$

For $\alpha \in \mathbb{U}$, let $K_\alpha(z) = \frac{1}{1 - \bar{\alpha}z}$ be the reproducing kernel at the point α for $H^2(\mathbb{U})$:

$$\langle f, K_\alpha \rangle = f(\alpha) \text{ for all } f \in H^2(\mathbb{U})$$

For an analytic function $\phi : \mathbb{U} \rightarrow \mathbb{U}$, Littlewood showed that C_ϕ, restricted to $H^2(\mathbb{U})$, is bounded.
Setting the Stage

- Let \(\phi \) denote a holomorphic function mapping the open unit disk \(\mathbb{U} \) into itself, let \(H(\mathbb{U}) \) be the space of holomorphic functions on \(\mathbb{U} \), and let \(C_\phi : H(\mathbb{U}) \to H(\mathbb{U}) \) be given by \(C_\phi f = f \circ \phi \).
- Let \(H^2(\mathbb{U}) = \{ f \in H(\mathbb{U}) : \sum_{n=0}^{\infty} |\hat{f}(n)|^2 < \infty \} \). Note \(H^2(\mathbb{U}) \) is a Hilbert space with inner product
 \[
 \langle f, g \rangle = \sum_{n=0}^{\infty} \hat{f}(n)\hat{g}(n).
 \]
- For \(\alpha \in \mathbb{U} \), let \(K_\alpha(z) = \frac{1}{1-\overline{\alpha}z} \) be the reproducing kernel at the point \(\alpha \) for \(H^2(\mathbb{U}) \):
 \[
 \langle f, K_\alpha \rangle = f(\alpha) \quad \text{for all} \quad f \in H^2(\mathbb{U})
 \]
- For an analytic function \(\phi : \mathbb{U} \to \mathbb{U} \), Littlewood showed that \(C_\phi \), restricted to \(H^2(\mathbb{U}) \), is bounded.
Starring Players

\[\phi_1(z) = \frac{1}{3 - z - z^2}, \quad \phi_2(z) = \frac{z^2 + z}{3 - z^2}, \quad \phi_3(z) = z^2 \]
Starring Players

\[\phi_1(z) = \frac{1}{3 - z - z^2}, \quad \phi_2(z) = \frac{z^2 + z}{3 - z^2}, \quad \phi_3(z) = z^2 \]

\[\phi_1(z) = \frac{1}{3 - z - z^2} \]

\[\phi_2(z) = \frac{z^2 + z}{3 - z^2} \]

\[\phi_3(z) = z^2 \]
Let $R : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be a rational map of degree d. If $R^{-1}(\{w\})$ contains d distinct points we will say w is a regular value of R. If $w \in \mathbb{C}$ is not a regular value, then w is a critical value of R (the image of a critical point—a point where R' vanishes). \(^1\)

Note that the set of critical values of R is finite: it contains precisely those points in the finite plane that have a preimage under R at which R' vanishes, and contains ∞ when $1/R$ has 0 as a critical value.

Examples

\(^1\) $R(\infty)$ is finite, $R'(\infty) := f'(0)$ given $f(z) = R(1/z)$
Regular Values and Critical Values

Let \(R : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \) be a rational map of degree \(d \). If \(R^{-1}(\{w\}) \) contains \(d \) distinct points we will say \(w \) is a regular value of \(R \). If \(w \in \mathbb{C} \) is not a regular value, then \(w \) is a critical value \(R \) (the image of a critical point—a point where \(R' \) vanishes).

Note that the set of critical values of \(R \) is finite: it contains precisely those points in the finite plane that have a preimage under \(R \) at which \(R' \) vanishes, and contains \(\infty \) when \(1/R \) has 0 as a critical value.

Examples
\[\phi_3(z) = z^2 \]

\(^1\) \(R(\infty) \) is finite, \(R'(\infty) := f'(0) \) given \(f(z) = R(1/z) \)
Regular Values and Critical Values

Let $R : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be a rational map of degree d. If $R^{-1}(\{w\})$ contains d distinct points we will say w is a regular value of R. If $w \in \mathbb{C}$ is not a regular value, then w is a critical value R (the image of a critical point—a point where R' vanishes).\(^1\)

Note that the set of critical values of R is finite: it contains precisely those points in the finite plane that have a preimage under R at which R' vanishes, and contains ∞ when $1/R$ has 0 as a critical value.

Examples

$\phi_3(z) = z^2$ has critical values 0 and ∞

\(^1\) $R(\infty)$ is finite, $R'(\infty) := f'(0)$ given $f(z) = R(1/z)$
Regular Values and Critical Values

Let $R : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be a rational map of degree d. If $R^{-1}(\{w\})$ contains d distinct points we will say w is a regular value of R. If $w \in \mathbb{C}$ is not a regular value, then w is a critical value of R (the image of a critical point—a point where R' vanishes). \(^1\) Note that the set of critical values of R is finite: it contains precisely those points in the finite plane that have a preimage under R at which R' vanishes, and contains ∞ when $1/R$ has 0 as a critical value.

Examples

$\phi_3(z) = z^2$ has critical values 0 and ∞

$\phi_1(z) = \frac{1}{3-z-z^2}$; $\phi_1'(z) = \frac{1+2z}{(3-z-z^2)^2}$

\(^1\) $R(\infty)$ is finite, $R'(\infty) := f'(0)$ given $f(z) = R(1/z)$
Let \(R : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \) be a rational map of degree \(d \). If \(R^{-1}\{w\} \) contains \(d \) distinct points we will say \(w \) is a regular value of \(R \). If \(w \in \mathbb{C} \) is not a regular value, then \(w \) is a critical value \(R \) (the image of a critical point—a point where \(R' \) vanishes). \(^1 \)

Note that the set of critical values of \(R \) is finite: it contains precisely those points in the finite plane that have a preimage under \(R \) at which \(R' \) vanishes, and contains \(\infty \) when \(1/R \) has 0 as a critical value.

Examples

\[\phi_3(z) = z^2 \] has critical values 0 and \(\infty \)

\[\phi_1(z) = \frac{1}{3-z-z^2} \] has critical values 0 and \(\phi_1(-1/2) = 4/13 \).

\(^1 R(\infty) \) is finite, \(R'(\infty) := f'(0) \) given \(f(z) = R(1/z) \)
Regular Values and Critical Values

Let $R : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be a rational map of degree d. If $R^{-1}(\{w\})$ contains d distinct points we will say w is a regular value of R. If $w \in \mathbb{C}$ is not a regular value, then w is a critical value R (the image of a critical point—a point where R' vanishes). \(^1\)

Note that the set of critical values of R is finite: it contains precisely those points in the finite plane that have a preimage under R at which R' vanishes, and contains ∞ when $1/R$ has 0 as a critical value.

Examples

- $\phi_3(z) = z^2$ has critical values 0 and ∞
- $\phi_1(z) = \frac{1}{3z - z^2}$ has critical values 0 and $\phi_1(-1/2) = 4/13$.
- $\phi_2(z) = \frac{z^2 + z - z^2}{3 - z^2}$; $\phi_2'(z) = \frac{z^2 + 6z + 3}{(3 - z^2)^2}$

\(^1\) $R(\infty)$ is finite, $R'(\infty) := f'(0)$ given $f(z) = R(1/z)$
Let $R : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be a rational map of degree d. If $R^{-1}(\{w\})$ contains d distinct points we will say w is a regular value of R. If $w \in \mathbb{C}$ is not a regular value, then w is a critical value of R (the image of a critical point—a point where R' vanishes). \(^1\)

Note that the set of critical values of R is finite: it contains precisely those points in the finite plane that have a preimage under R at which R' vanishes, and contains ∞ when $1/R$ has 0 as a critical value.

Examples

$\phi_3(z) = z^2$ has critical values 0 and ∞

$\phi_1(z) = \frac{1}{3-z-z^2}$ has critical values 0 and $\phi_1(-1/2) = 4/13$.

$\phi_2(z) = \frac{z^2+z}{3-z^2}$ has critical values $\phi_2(-3 + \sqrt{6}) \approx -0.09175$ and $\phi_2(-3 - \sqrt{6}) \approx -0.90825$.

\(^1\) $R(\infty)$ is finite, $R'(\infty) := f'(0)$ given $f(z) = R(1/z)$.
An Adjoint Calculation: C^*_ϕ, where $\phi(z) = z^2$

\[(C^*_\phi f)(z) = \langle C^*_\phi f, K_z \rangle = \langle f, C_\phi K_z \rangle\]

\[(K_z \circ \phi)(w) = \frac{1}{1 - \bar{z}\phi(w)} = \frac{1}{(1 - \sqrt{w})(1 + \sqrt{zw})} = \frac{1/2}{1 - \sqrt{zw}} + \frac{1/2}{1 + \sqrt{zw}}\]
An Adjoint Calculation: C^*_ϕ, where $\phi(z) = z^2$

\[(C^*_\phi f)(z) = \langle C^*_\phi f, K_z \rangle = \langle f, C_\phi K_z \rangle\]

\[(K_z \circ \phi)(w) = \frac{1}{1 - \bar{z}\phi(w)} = \frac{1}{(1 - \sqrt{\bar{z}}w)(1 + \sqrt{\bar{z}}w)} = \frac{1}{2} + \frac{1}{2} \frac{1}{1 - \sqrt{\bar{z}}w} + \frac{1}{1 + \sqrt{\bar{z}}w}\]
An Adjoint Calculation: C^*_ϕ, where $\phi(z) = z^2$

\[
(C^*_\phi f)(z) = \langle C^*_\phi f, K_z \rangle = \langle f, C^*_\phi K_z \rangle
\]

\[
(K_z \circ \phi)(w) = \frac{1}{1 - \bar{z}\phi(w)}
\]

\[
= \frac{1}{(1 - \sqrt{w})(1 + \sqrt{w})}
\]

\[
= \frac{1/2}{1 - \sqrt{zw}} + \frac{1/2}{1 + \sqrt{zw}}
\]
An Adjoint Calculation: C^*_ϕ, where $\phi(z) = z^2$

\[
(C^*_\phi f)(z) = \langle C^*_\phi f, K_z \rangle = \langle f, C\phi K_z \rangle
\]

\[
(K_z \circ \phi)(w) = \frac{1}{1 - \bar{z}w^2}
\]

\[
= \frac{1}{(1 - \sqrt{\bar{z}}w)(1 + \sqrt{\bar{z}}w)}
\]

\[
= \frac{1/2}{1 - \sqrt{\bar{z}}w} + \frac{1/2}{1 + \sqrt{\bar{z}}w}
\]
An Adjoint Calculation: C^*_ϕ, where $\phi(z) = z^2$

$(C^*_\phi f)(z) = \langle C^*_\phi f, K_z \rangle$

$= \langle f, C\phi K_z \rangle$

$(K_z \circ \phi)(w) = \frac{1}{1 - \overline{z}w^2}$

$= \frac{1}{(1 - \sqrt{\overline{z}}w)(1 + \sqrt{\overline{z}}w)}$

$= \frac{1/2}{1 - \sqrt{\overline{z}}w} + \frac{1/2}{1 + \sqrt{\overline{z}}w}$
An Adjoint Calculation: C^*_ϕ, where $\phi(z) = z^2$

$$(C^*_\phi f)(z) = \langle C^*_\phi f, K_z \rangle = \langle f, C\phi K_z \rangle$$

$$(K_z \circ \phi)(w) = \frac{1}{1 - \bar{z}w^2} = \frac{1}{(1 - \sqrt{\bar{z}}w)(1 + \sqrt{\bar{z}}w)} = \frac{1/2}{1 - \sqrt{\bar{z}}w} + \frac{1/2}{1 + \sqrt{\bar{z}}w}$$
An Adjoint Calculation: C^*_ϕ, where $\phi(z) = z^2$

$$(C^*_\phi f)(z) = \langle C^*_\phi f, K_z \rangle = \langle f, C^*_\phi K_z \rangle$$

$$(K_z \circ \phi)(w) = \frac{1}{1 - \bar{z}w^2} = \frac{1}{(1 - \sqrt{z}w)(1 + \sqrt{z}w)} = \frac{1/2}{1 - \sqrt{z}w} + \frac{1/2}{1 + \sqrt{z}w}$$
An Adjoint Calculation: \(C_{\phi}^* \), where \(\phi(z) = z^2 \)

\[
(C_{\phi}^* f)(z) = \langle C_{\phi}^* f, K_z \rangle = \langle f, C_{\phi} K_z \rangle
\]

\[
(K_z \circ \phi)(w) = \frac{1}{1 - \bar{w} z^2}
\]

\[
= \frac{1}{(1 - \sqrt{z} w)(1 + \sqrt{z} w)}
\]

\[
= \frac{1/2}{1 - \sqrt{z} w} + \frac{1/2}{1 + \sqrt{z} w}
\]
An Adjoint Calculation: C^*_ϕ, where $\phi(z) = z^2$

\[
(C^*_\phi f)(z) = \langle C^*_\phi f, K_z \rangle = \langle f, C\phi K_z \rangle
\]

\[
(K_z \circ \phi)(w) = \frac{1}{1 - \bar{z}w^2} = \frac{1}{(1 - \sqrt{z}w)(1 + \sqrt{z}w)}
\]

\[
= \frac{1}{1 - \sqrt{z}w} + \frac{1}{1 - (-\sqrt{z})w}
\]
An Adjoint Calculation: C^*_ϕ, where $\phi(z) = z^2$

\[(C^*_\phi f)(z) = \langle C^*_\phi f, K_z \rangle = \langle f, C_\phi K_z \rangle\]

\[(K_z \circ \phi)(w) = \frac{1}{1 - \bar{z}w^2} = \frac{1}{(1 - \sqrt{z}w)(1 + \sqrt{z}w)} = \frac{1}{2} K_{\sqrt{z}} + \frac{1}{2} K_{-\sqrt{z}}\]
An Adjoint Calculation: C^*_ϕ, where $\phi(z) = z^2$

\[(C^*_\phi f)(z) = \langle C^*_\phi f, K_z \rangle = \langle f, 1/2 K_{\sqrt{z}} + 1/2 K_{-\sqrt{z}} \rangle\]

\[(K_z \circ \phi)(w) = \frac{1}{1 - \bar{z}w^2} = \frac{1}{(1 - \sqrt{z}w)(1 + \sqrt{z}w)} = 1/2 K_{\sqrt{z}} + 1/2 K_{-\sqrt{z}}\]
An Adjoint Calculation: C^*_ϕ, where $\phi(z) = z^2$

$$(C^*_\phi f)(z) = \langle C^*_\phi f, K_z \rangle$$
$$= \langle f, 1/2 K_{\sqrt{z}} + 1/2 K_{-\sqrt{z}} \rangle$$

$$(K_z \circ \phi)(w) = \frac{1}{1 - \bar{z}w^2}$$
$$= \frac{1}{(1 - \sqrt{z}w)(1 + \sqrt{z}w)}$$
$$= 1/2 K_{\sqrt{z}} + 1/2 K_{-\sqrt{z}}$$
An Adjoint Calculation: C^*_ϕ, where $\phi(z) = z^2$

$$(C^*_\phi f)(z) = \langle C^*_\phi f, K_z \rangle$$

$$= \langle f, 1/2 K_{\sqrt{z}} + 1/2 K_{-\sqrt{z}} \rangle$$

$$= 1/2 f(\sqrt{z}) + 1/2 f(-\sqrt{z})$$

$$(K_z \circ \phi)(w) = \frac{1}{1 - \bar{z}w^2}$$

$$= \frac{1}{(1 - \sqrt{z}w)(1 + \sqrt{z}w)}$$

$$= 1/2 K_{\sqrt{z}} + 1/2 K_{-\sqrt{z}}$$
An Adjoint Calculation: C^*_ϕ, where $\phi(z) = z^2$

$$(C^*_\phi f)(z) = \langle C^*_\phi f, K_z \rangle$$
$$= \langle f, 1/2 K_{\sqrt{z}} + 1/2 K_{-\sqrt{z}} \rangle$$
$$= 1/2 f(\sqrt{z}) + 1/2 f(-\sqrt{z})$$
$$= \left(1/2 C_{\sqrt{z}} + 1/2 C_{-\sqrt{z}}\right) f$$

$$(K_z \circ \phi)(w) = \frac{1}{1 - \bar{z}w^2}$$
$$= \frac{1}{(1 - \sqrt{z}w)(1 + \sqrt{z}w)}$$
$$= 1/2 K_{\sqrt{z}} + 1/2 K_{-\sqrt{z}}$$
An Adjoint Calculation: C^*_ϕ, where $\phi(z) = z^2$

\[
(C^*_\phi f)(z) = \langle C^*_\phi f, K_z \rangle \\
= \langle f, 1/2 K_{\sqrt{z}} + 1/2 K_{-\sqrt{z}} \rangle \\
= 1/2 f(\sqrt{z}) + 1/2 f(-\sqrt{z}) \\
= \left(1/2 C_{\sqrt{z}} + 1/2 C_{-\sqrt{z}}\right) f \\
= 1/2 C_{\sqrt{z}} f
\]

\[
(K_z \circ \phi)(w) = \frac{1}{1 - \bar{z}w^2} \\
= \frac{1}{(1 - \sqrt{z}w)(1 + \sqrt{z}w)} \\
= 1/2 K_{\sqrt{z}} + 1/2 K_{-\sqrt{z}}
\]
C^*_ϕ for $\phi(z) = \frac{1}{3-z-z^2}$

$$C^*_\phi = M_{g_1} C_{\sigma_1} + M_{g_2} C_{\sigma_2} + C_0$$

where $\sigma_1(z) = \frac{-2}{1-\sqrt{13-4z}}$, $\sigma_2(z) = \frac{-2}{1+\sqrt{13-4z}}$, $g_1(z) = \frac{z\sigma_1'(z)}{\sigma_1(z)}$, and $g_2(z) = \frac{z\sigma_2'(z)}{\sigma_2(z)}$.

Thus $C^*_\phi \equiv M_{g_1} C_{\sigma_1}$ modulo the compact operators.
C^* \phi for \phi(z) = \frac{1}{3-z-z^2}

\[C^* \phi = M_{g_1} C_{\sigma_1} + M_{g_2} C_{\sigma_2} + C_0 \]

where \(\sigma_1(z) = \frac{-2}{1-\sqrt{13-4z}}, \sigma_2(z) = \frac{-2}{1+\sqrt{13-4z}}, g_1(z) = \frac{z\sigma'_1(z)}{\sigma_1(z)} \),

and \(g_2(z) = \frac{z\sigma'_2(z)}{\sigma_2(z)}. \)

Thus \(C^* \phi \equiv M_{g_1} C_{\sigma_1} \) modulo the compact operators.
C^*_ϕ for $\phi(z) = \frac{1}{3-z-z^2}$

\[
C^*_\phi = M_{g_1} C_{\sigma_1} + M_{g_2} C_{\sigma_2} + C_0
\]

where $\sigma_1(z) = \frac{-2}{1 - \sqrt{13 - 4z}}$, $\sigma_2(z) = \frac{-2}{1 + \sqrt{13 - 4z}}$, $g_1(z) = \frac{z \sigma_1'(z)}{\sigma_1(z)}$, and $g_2(z) = \frac{z \sigma_2'(z)}{\sigma_2(z)}$.

Thus $C^*_\phi \equiv M_{g_1} C_{\sigma_1}$ modulo the compact operators.
Cowen’s Adjoint Formula

Suppose that \(\phi(z) = \frac{az+b}{cz+d} \) is a nonconstant linear-fractional self-map of \(\mathbb{U} \). Then

\[
C^*_\phi = M_g C_\sigma M_h^*,
\]

where

\[
\sigma(z) = \frac{\bar{a}z - \bar{c}}{-bz + \bar{d}}, \quad g(z) = \frac{1}{-bz + \bar{d}}, \quad \text{and} \quad h(z) = cz + d.
\]

Note \(\sigma(z) = \frac{1}{\phi^{-1}(1/\bar{z})} \);

\[
M_h^* = \bar{c}(M_z)^* + \bar{d} = \bar{c}B + \bar{d}; \quad \text{also},
\]

\[
z\sigma'(z) = z \frac{\bar{a}\bar{d} - \bar{b}\bar{c}}{(-\bar{b}z + \bar{d})^2} - \bar{b}z + \bar{d} \quad \bar{d}(\bar{a}z - \bar{c}) + \bar{c}(-\bar{b}z + \bar{d})
\]

\[
= g(z)(\bar{d}\sigma(z) + \bar{c})
\]
Cowen’s Adjoint Formula

Suppose that $\phi(z) = \frac{az+b}{cz+d}$ is a nonconstant linear-fractional self-map of \mathbb{U}. Then

$$C^*_\phi = M_g C_\sigma M^*_h,$$

where

$$\sigma(z) = \frac{\bar{a}z - \bar{c}}{-bz + \bar{d}}, \quad g(z) = \frac{1}{-bz + \bar{d}}, \text{ and } h(z) = cz + d.$$

Note $\sigma(z) = \frac{1}{\phi^{-1}(1/\bar{z})}$;

$$M^*_h = \bar{c}(M_z)^* + \bar{d} = \bar{c}B + \bar{d};$$

also,

$$z\sigma'(z) = z \frac{\bar{a}\bar{d} - \bar{b}\bar{c}}{(-bz + \bar{d})^2} = \frac{1}{-bz + \bar{d}} \left(\bar{d}(\bar{a}z - \bar{c}) + \bar{c}(-bz + \bar{d}) \right) = g(z)(\bar{d}\sigma(z) + \bar{c}).$$
Cowen’s Adjoint Formula

Suppose that $\phi(z) = \frac{az+b}{cz+d}$ is a nonconstant linear-fractional self-map of \mathbb{U}. Then

$$C^*_\phi = M_g C_\sigma M^*_h,$$

where

$$\sigma(z) = \frac{\bar{a} z - \bar{c}}{-b z + \bar{d}}, \quad g(z) = \frac{1}{-b z + \bar{d}}, \quad\text{and} \quad h(z) = cz + d.$$

Note $\sigma(z) = \frac{1}{\phi^{-1}(1/\bar{z})}$;

$$M^*_h = \bar{c}(M_z)^* + \bar{d} = \bar{c}B + \bar{d} ;$$

also,

$$z \sigma'(z) = z \frac{\bar{a} \bar{d} - \bar{b} \bar{c}}{(-b z + \bar{d})^2} = \frac{1}{-b z + \bar{d}} \frac{\bar{d}(\bar{a} z - \bar{c}) + \bar{c}(-b z + \bar{d})}{-b z + \bar{d}} = g(z)(\bar{d} \sigma(z) + \bar{c})$$
Cowen’s Adjoint Formula

Suppose that $\phi(z) = \frac{az + b}{cz + d}$ is a nonconstant linear-fractional self-map of \mathbb{U}. Then

$$C^*_\phi = M_g C_\sigma M_h^*,$$

where

$$\sigma(z) = \frac{\bar{a}z - \bar{c}}{-bz + d}, \quad g(z) = \frac{1}{-bz + d}, \quad \text{and } h(z) = cz + d.$$

Note $\sigma(z) = \frac{1}{\phi^{-1}(1/\bar{z})}$;

$$M_h^* = \bar{c}(M_z)^* + \bar{d} = \bar{c}B + \bar{d};$$ also,

$$z\sigma'(z) = z\frac{\bar{a}\bar{d} - \bar{b}\bar{c}}{(-bz + d)^2} = \frac{1}{-bz + d} \frac{\bar{d}(\bar{a}z - \bar{c}) + \bar{c}(-\bar{b}z + \bar{d})}{-\bar{b}z + \bar{d}} = g(z)(\bar{d}\sigma(z) + \bar{c})$$
"HMR" form: $\phi(\infty) \in \mathbb{U}$

$\phi(z) = \frac{az + b}{cz + d}$ and $\sigma(z) = \frac{-\overline{a}z - \overline{c}}{-bz + d}$ so $\phi(\infty) = a/c$ in \mathbb{U} implies σ's zero, $\overline{c}/\overline{a}$ lies outside of closure of \mathbb{U}; $g(z) = \frac{1}{-bz + d}$.

$$(C^*_\phi f) = (M_g C_\sigma M^*_h) f$$

$$= \bar{c}g C_\sigma (Bf) + \bar{d}g C_\sigma f$$

$$= \bar{c}g \frac{f \circ \sigma - f(0)}{\sigma} + \bar{d}g \frac{f \circ \sigma}{\sigma}$$

$$= \left(\frac{-\overline{c} + \overline{d}\sigma}{\sigma}\right) g f \circ \sigma - \overline{c}gf(0) \frac{1}{\sigma}$$

$$= (at z) \frac{z\sigma'(z)}{\sigma(z)} (C_\sigma f)(z) - \overline{c}f(0) \frac{1}{az - \overline{c}}$$

$C^*_\phi = \psi C_\sigma + \Lambda_{\infty}$, where $(\Lambda_{\infty} f)(z) = \frac{f(0)}{1 - \phi(\infty)z}$.
“HMR” form: $\phi(\infty) \in \mathbb{U}$

$\phi(z) = \frac{az+b}{cz+d}$ and $\sigma(z) = \frac{-sz-\bar{c}}{-bz+d}$ so $\phi(\infty) = a/c$ in \mathbb{U} implies σ's zero, \bar{c}/\bar{a} lies outside of closure of \mathbb{U}; $g(z) = \frac{1}{-bz+d}$.

\[
(C_\phi^* f) = M_g C_\sigma(\bar{c}B + \bar{d})f
\]

\[
= \bar{c}gC_\sigma(Bf) + \bar{d}gC_\sigma f
\]

\[
= \bar{c}g\left(\frac{f \circ \sigma - f(0)}{\sigma}\right) + \bar{d}g\left(\frac{f \circ \sigma}{\sigma}\right)
\]

\[
= \left(\frac{\bar{c} + \bar{d}\sigma}{\sigma}\right) f \circ \sigma - \frac{\bar{c}gf(0)}{\sigma}
\]

\[
= (at \ z) \frac{z\sigma'(z)}{\sigma(z)}(C_\sigma f)(z) - \frac{\bar{c}f(0)}{\bar{a}z - \bar{c}}
\]

$C_\phi^* = \psi C_\sigma + \Lambda_\infty$, where $(\Lambda_\infty f)(z) = \frac{f(0)}{1 - \phi(\infty)z}$.

Rationally Induced Adjoint Composition Operators on $H(\mathbb{U})$

Setting the Stage

Regular and Critical Values

A Nice Example

Cowen's Adjoint Formula

HMR Form and Regular Form

Outer-Regular Self-Maps

Strongly Outer-Regular Self-Maps
“HMR” form: $\phi(\infty) \in \mathbb{U}$

\[\phi(z) = \frac{az+b}{cz+d} \quad \text{and} \quad \sigma(z) = \frac{-\bar{a}z-\bar{c}}{-bz+\bar{d}} \quad \text{so} \quad \phi(\infty) = \frac{a}{c} \in \mathbb{U} \]

implies σ’s zero, \bar{c}/\bar{a} lies outside of closure of $\mathbb{U} ; g(z) = \frac{1}{-bz+d}$.

\[(C^*_\phi f) = M_g C_\sigma (\bar{c}Bf + \bar{d}f) \]

\[= \bar{c}g C_\sigma (Bf) + \bar{d}g C_\sigma f \]

\[= \bar{c}g \left(\frac{f \circ \sigma - f(0)}{\sigma} \right) + \bar{d}g \frac{f \circ \sigma}{\sigma} \]

\[= \left(\frac{\bar{c} + \bar{d} \sigma}{\sigma} \right) g f \circ \sigma - \frac{\bar{c}gf(0)}{\sigma} \]

\[= (\text{at} \ z) \left(\frac{Z\sigma'(Z)}{\sigma(Z)} (C_\sigma f)(z) - \frac{\bar{c}f(0)}{\bar{a}z - \bar{c}} \right) \]

\[C^*_\phi = \psi C_\sigma + \Lambda_\infty, \text{ where } (\Lambda_\infty f)(z) = \frac{f(0)}{1 - \phi(\infty)z}. \]
“HMR” form: \(\phi(\infty) \in \mathbb{U} \)

\[
\phi(z) = \frac{az + b}{cz + d} \quad \text{and} \quad \sigma(z) = \frac{-\bar{a}z - \bar{c}}{-bz + d}
\]

so \(\phi(\infty) = a/c \) in \(\mathbb{U} \) implies \(\sigma \)'s zero, \(\bar{c}/\bar{a} \) lies outside of closure of \(\mathbb{U} \); \(g(z) = \frac{1}{-bz + d} \).

\[
(C^*_\phi f) = M_g C_\sigma (\bar{c}Bf + \bar{d}f)
\]

\[
= \bar{c}g C_\sigma (Bf) + \bar{d}g C_\sigma f
\]

\[
= \bar{c}g \frac{f \circ \sigma - f(0)}{\sigma} + \bar{d}g \frac{\sigma f \circ \sigma}{\sigma}
\]

\[
= \left(\frac{\bar{c} + \bar{d} \sigma}{\sigma} \right) gf \circ \sigma - \frac{\bar{c}gf(0)}{\sigma}
\]

\[
= (\text{at } z) \frac{z \sigma'(z)}{\sigma(z)} (C_\sigma f)(z) - \frac{\bar{c}f(0)}{\bar{a}z - \bar{c}}
\]

\[
C^*_\phi = \psi C_\sigma + \Lambda_\infty, \quad \text{where} \quad (\Lambda_\infty f)(z) = \frac{f(0)}{1 - \phi(\infty)z}.
\]
“HMR” form: \(\phi(\infty) \in \mathbb{U} \)

\[
\phi(z) = \frac{az+b}{cz+d} \quad \text{and} \quad \sigma(z) = \frac{\bar{a}z-\bar{c}}{-bz+d} \quad \text{so} \quad \phi(\infty) = \frac{a}{c} \text{ in } \mathbb{U} \text{ implies } \\
\sigma' \text{ s zero, } \frac{\bar{c}}{\bar{a}} \text{ lies outside of closure of } \mathbb{U} ; \\
g(z) = \frac{1}{-bz+d}.
\]

\[
(C^*_\phi f) = M_g C_\sigma (\bar{c}Bf + \bar{d}f) \\
= \bar{c}gC_\sigma \left(\frac{f(z) - f(0)}{z} \right) + \bar{d}g C_\sigma f \\
= \bar{c}g \frac{f \circ \sigma - f(0)}{\sigma} + \bar{d}g \frac{\sigma f \circ \sigma}{\sigma} \\
= \left(\frac{\bar{c} + \bar{d} \sigma}{\sigma} \right) g f \circ \sigma - \frac{\bar{c}gf(0)}{\sigma} \\
= (\text{at } z) \frac{z \sigma'(z)}{\sigma(z)} (C_\sigma f)(z) - \frac{\bar{c}f(0)}{\bar{a}z - \bar{c}}
\]

\[
C^*_\phi = \psi C_\sigma + \Lambda_\infty, \text{ where } (\Lambda_\infty f)(z) = \frac{f(0)}{1 - \phi(\infty)z}.
\]
“HMR” form: $\phi(\infty) \in \mathbb{U}$

$\phi(z) = \frac{az+b}{cz+d}$ and $\sigma(z) = \frac{-\bar{a}z-\bar{c}}{-bz+d}$ so $\phi(\infty) = a/c$ in \mathbb{U} implies σ’s zero, \bar{c}/\bar{a} lies outside of closure of \mathbb{U}; $g(z) = \frac{1}{-bz+d}$.

\[
(C^*_\phi f) = M_g C_\sigma (\bar{c}Bf + \bar{d}f)
\]

\[
= \bar{c}gC_\sigma \left(\frac{f(z) - f(0)}{z} \right) + \bar{d}gC_\sigma f
\]

\[
= \bar{c}g \left(\frac{\sigma f - f(0)}{\sigma} \right) + \bar{d}g \left(\frac{\sigma f - f(0)}{\sigma} \right)
\]

\[
= (at \ z) \left(\frac{z\sigma'(z)}{\sigma(z)} \right) (C_\sigma f)(z) - \frac{\bar{c}f(0)}{\bar{a}z - \bar{c}}
\]

$C^*_\phi = \psi C_\sigma + \Lambda_\infty$, where $(\Lambda_\infty f)(z) = \frac{f(0)}{1 - \phi(\infty)z}$.

Rationally Induced Adjoint Composition Operators on $H^2(\mathbb{U})$

Setting the Stage

Regular and Critical Values

A Nice Example

Cowen’s Adjoint Formula

HMR Form and Regular Form

Outer-Regular Self-Maps

Strongly Outer-Regular Self-Maps
“HMR” form: \(\phi(\infty) \in \mathbb{U} \)

\[
\phi(z) = \frac{az+b}{cz+d} \quad \text{and} \quad \sigma(z) = \frac{\bar{a}z-\bar{c}}{-bz+d} \quad \text{so } \phi(\infty) = a/c \text{ in } \mathbb{U} \text{ implies } \\
\sigma \text{'s zero, } \bar{c}/\bar{a} \text{ lies outside of closure of } \mathbb{U} ; \ g(z) = \frac{1}{-bz+d}.
\]

\[
(C^*_\phi f) = M_g \ C_\sigma (\bar{c}Bf + \bar{d}f)
\]

\[
= \bar{c}gC_\sigma \left(\frac{f(z) - f(0)}{z} \right) + \bar{d}g \ C_\sigma f
\]

\[
= \bar{c}g \left(\frac{f \circ \sigma - f(0)}{\sigma} \right) + \bar{d}g \ \sigma f \circ \sigma
\]

\[
= \left(\bar{c} + \bar{d} \sigma \right) g f \circ \sigma - \frac{\bar{c}gf(0)}{\sigma}
\]

\[
= (at \ z) \ \frac{z \sigma'(z)}{\sigma(z)} (C_\sigma f)(z) - \frac{\bar{c}f(0)}{\bar{a}z - \bar{c}}
\]

\[
C^*_\phi = \psi C_\sigma + \Lambda_\infty, \quad \text{where } (\Lambda_\infty f)(z) = \frac{f(0)}{1 - \phi(\infty)z}.
\]
“HMR” form : \(\phi(\infty) \in \mathbb{U} \)

\[
\phi(z) = \frac{az+b}{cz+d} \quad \text{and} \quad \sigma(z) = \frac{\bar{a}z-\bar{c}}{-bz+d} \quad \text{so} \quad \phi(\infty) = \frac{a}{c} \quad \text{in} \quad \mathbb{U} \quad \text{implies}\n
\sigma’s \quad \text{zero}, \quad \bar{c}/\bar{a} \quad \text{lies outside of closure of} \quad \mathbb{U} \quad ; \quad g(z) = \frac{1}{-bz+d}.
\]

\[
(C_\phi^* f) = M_g C_\sigma (\bar{c}Bf + \bar{d}f)
\]

\[
= \bar{c}gC_\sigma \left(\frac{f(z) - f(0)}{z} \right) + \bar{d}gC_\sigma f
\]

\[
= \bar{c}g \frac{f \circ \sigma - f(0)}{\sigma} + \bar{d}g \frac{\sigma f \circ \sigma}{\sigma}
\]

\[
= \left(\frac{\bar{c} + \bar{d}\sigma}{\sigma} \right) g f \circ \sigma - \frac{\bar{c}gf(0)}{\sigma}
\]

\[
= (\text{at } z) \quad \frac{z \sigma'(z)}{\sigma(z)} (C_\sigma f)(z) - \frac{\bar{c}f(0)}{\bar{a}z - \bar{c}}
\]

\[
C_\phi^* = \psi C_\sigma + \Lambda_\infty, \quad \text{where} \quad (\Lambda_\infty f)(z) = \frac{f(0)}{1 - \phi(\infty)z}.
\]
“HMR” form: \(\phi(\infty) \in \mathbb{U} \)

\[\phi(z) = \frac{az+b}{cz+d} \quad \text{and} \quad \sigma(z) = \frac{\bar{a}z-\bar{c}}{-bz+d}, \]

so \(\phi(\infty) = a/c \) in \(\mathbb{U} \) implies \(\sigma \)'s zero, \(\bar{c}/\bar{a} \) lies outside of closure of \(\mathbb{U} \); \(g(z) = \frac{1}{-bz+d} \).

\[
(C^*_\phi f) = M_g C_\sigma (\bar{c} B f + \bar{d} f) \\
= \bar{c} g C_\sigma \left(\frac{f(z) - f(0)}{z} \right) + \bar{d} g C_\sigma f \\
= \bar{c} g f \circ \sigma - f(0) + \bar{d} g \sigma f \circ \sigma \\
= \left(\frac{\bar{c} + \bar{d} \sigma}{\sigma} \right) g f \circ \sigma - \bar{c} g f(0) \\
= \left(\frac{z \sigma'(z)}{\sigma(z)} (C_\sigma f)(z) \right) - \bar{c} f(0) \frac{1}{\bar{a}z - \bar{c}}
\]

\[C^*_\phi = \psi C_\sigma + \Lambda_\infty, \text{ where } (\Lambda_\infty f)(z) = \frac{f(0)}{1 - \phi(\infty)z}. \]
“HMR” form: \(\phi(\infty) \in \mathbb{U} \)

\[
\phi(z) = \frac{az + b}{cz + d} \quad \text{and} \quad \sigma(z) = \frac{-\bar{a}z - \bar{c}}{-bz + d} \quad \text{so} \quad \phi(\infty) = \frac{a}{c} \quad \text{in} \quad \mathbb{U} \quad \text{implies} \quad \\
\sigma'\text{'s zero, } \bar{c}/\bar{a} \text{ lies outside of closure of } \mathbb{U} ; \quad g(z) = \frac{1}{-bz + d}.
\]

\[
(C^*_\phi f) = Mg C_\sigma (\bar{c} B f + \bar{d} f)
\]

\[
= \bar{c} g C_\sigma \left(\frac{f(z) - f(0)}{z} \right) + \bar{d} g C_\sigma f
\]

\[
= \bar{c} g \frac{f \circ \sigma - f(0)}{\sigma} + \bar{d} g \sigma f \circ \sigma
\]

\[
= \left(\frac{\bar{c} + \bar{d} \sigma}{\sigma} \right) g f \circ \sigma - \bar{c} g f(0)
\]

\[
= (at \ z) \ \frac{Z \sigma'(Z)}{\sigma(Z)} (C_\sigma f)(z) + \frac{f(0)}{1 - \frac{\bar{a}}{c} z}
\]

\[
C^*_\phi = \psi C_\sigma + \Lambda_\infty \quad \text{where} \quad \Lambda_\infty f(z) = \frac{f(0)}{1 - \phi(\infty) z}.
\]
“HMR” form: $\phi(\infty) \in \mathbb{U}$

$\phi(z) = \frac{az+b}{cz+d}$ and $\sigma(z) = \frac{-\bar{a}z-\bar{c}}{-bz+d}$ so $\phi(\infty) = a/c$ in \mathbb{U} implies σ’s zero, \bar{c}/\bar{a} lies outside of closure of \mathbb{U}; $g(z) = \frac{1}{-bz+d}$.

\[
(C^*_\phi f) = Mg C_\sigma(\bar{c}Bf + \bar{d}f)
\]

\[
= \bar{c}gC_\sigma \left(\frac{f(z) - f(0)}{z} \right) + \bar{d}g C_\sigma f
\]

\[
= \bar{c}g \frac{f \circ \sigma - f(0)}{\sigma} + \bar{d}g \frac{f \circ \sigma}{\sigma}
\]

\[
= \left(\frac{\bar{c} + \bar{d}\sigma}{\sigma} \right) g f \circ \sigma - \bar{c}gf(0)
\]

\[
= (at Z) \frac{Z\sigma'(Z)}{\sigma(Z)}(C_\sigma f)(Z) + \frac{f(0)}{1 - \phi(\infty)Z}
\]

$C^*_\phi = \psi C_\sigma + \Lambda_\infty$, where $(\Lambda_\infty f)(Z) = \frac{f(0)}{1 - \phi(\infty)Z}$.
“HMR” form: $\phi(\infty) \in \mathbb{U}$

$$\phi(z) = \frac{az+b}{cz+d} \quad \text{and} \quad \sigma(z) = \frac{-\bar{a}z-\bar{c}}{-bz+d} \quad \text{so} \quad \phi(\infty) = \frac{a}{c} \quad \text{in} \quad \mathbb{U} \implies \sigma' \text{‘s zero, } \bar{c}/\bar{a} \text{ lies outside of closure of } \mathbb{U}; \ g(z) = \frac{1}{-bz+d}$$

$$(C^*_\phi f) = M_g C_\sigma (\bar{c}Bf + \bar{d}f) = \bar{c}gC_\sigma \left(\frac{f(z) - f(0)}{z} \right) + \bar{d}g C_\sigma f = \bar{c}g \frac{f \circ \sigma - f(0)}{\sigma} + \bar{d}g \frac{\sigma f \circ \sigma}{\sigma} = \left(\frac{\bar{c} + \bar{d}\sigma}{\sigma} \right) g f \circ \sigma - \frac{\bar{c}g f(0)}{\sigma} = (at \ z) \frac{Z\sigma'(z)}{\sigma(z)} (C_\sigma f)(z) + \frac{f(0)}{1 - \phi(\infty)z}$$

$$C^*_\phi = \psi C_\sigma + \Lambda_\infty, \text{ where } (\Lambda_\infty f)(z) = \frac{f(0)}{1 - \phi(\infty)z}.$$
Rationally Induced Adjoint Composition Operators on $H(\mathbb{U})$

Setting the Stage

Regular and Critical Values

A Nice Example

Cowen's Adjoint Formula

HMR Form and Regular Form

Outer-Regular Self-Maps

Strongly Outer-Regular Self-Maps

"HMR" form: $\phi(\infty) \in \mathbb{U}$

$$
\psi(z) = \frac{z\sigma'(z)}{\sigma(z)}
$$

$$(C_\phi^* f) = M_g C_\sigma(\bar{c}Bf + \bar{d}f)
$$

$$
= \bar{c}gC_\sigma\left(\frac{f(z) - f(0)}{z}\right) + \bar{d}g C_\sigma f
$$

$$
= \bar{c}g\frac{f \circ \sigma - f(0)}{\sigma} + \bar{d}g \sigma f \circ \sigma
$$

$$
= \left(\frac{\bar{c} + \bar{d}\sigma}{\sigma}\right)gf \circ \sigma - \frac{\bar{c}gf(0)}{\sigma}
$$

$$
= (\text{at } z) \frac{z\sigma'(z)}{\sigma(z)}(C_\sigma f)(z) + \frac{f(0)}{1 - \phi(\infty)z}
$$

$$
C_\phi^* = \psi C_\sigma + \Lambda_\infty, \text{ where } (\Lambda_\infty f)(z) = \frac{f(0)}{1 - \phi(\infty)z}. \text{HMR - Form}
$$
Rationally Induced Adjoint Composition Operators on $H(U)$

Setting the Stage

Regular and Critical Values

A Nice Example

Cowen's Adjoint Formula

HMR Form and Regular Form

Outer-Regular Self-Maps

Strongly Outer-Regular Self-Maps

Regular Form

Recall $\phi(z) = \frac{az+b}{cz+d}$, $\sigma(z) = \frac{\bar{a}z-\bar{c}}{-bz+d}$, $g(z) = \frac{1}{-bz+d}$, $z\sigma'(z) = g(\bar{c} + \bar{d}\sigma)$.

\[(C^*_\phi f) = (M_g C_\sigma M^*_h) f\]

\begin{align*}
= & \quad \bar{c} g C_\sigma (Bf) + \bar{d} g C_\sigma f \\
= & \quad \bar{c} g C_\sigma (Bf) + \bar{d} g (f \circ \sigma - f(0) + f(0)) \\
= & \quad \bar{c} g C_\sigma (Bf) + \bar{d} g \frac{(f \circ \sigma - f(0))}{\sigma} + \bar{d} g f(0) \\
= & \quad g(\bar{c} + \bar{d}\sigma) C_\sigma (Bf) + \bar{d} g f(0) \\
= & \quad (at \ z) \ z\sigma'(z)(C_\sigma Bf)(z) + \frac{\bar{d} g f(0)}{-bz+d}
\end{align*}

\[
C^*_\phi = \nu C_\sigma B + \Lambda_0, \quad \text{where} \quad (\Lambda_0 f)(z) = \frac{f(0)}{1 - \phi(0)z}.
\]
Regular Form

Recall $\phi(z) = \frac{az+b}{cz+d}$, $\sigma(z) = \frac{\bar{a}z-\bar{c}}{-bz+d}$, $g(z) = \frac{1}{-bz+d}$,

$z\sigma'(z) = g(\bar{c} + \bar{d}\sigma)$.

$$ (C^*_\phi f) = Mg \ C_\sigma (\bar{c}B + \bar{d})f $$

$$ = \bar{c}gC_\sigma (Bf) + \bar{d}gC_\sigma f $$

$$ = \bar{c}gC_\sigma (Bf) + \bar{d}g(\sigma \circ f - f(0) + f(0)) $$

$$ = \bar{c}gC_\sigma (Bf) + \bar{d}g\sigma \frac{(f \circ \sigma - f(0))}{\sigma} + \bar{d}gf(0) $$

$$ = g(\bar{c} + \bar{d}\sigma)C_\sigma (Bf) + \bar{d}gf(0) $$

$$ = (at \ z) \ z\sigma'(z)(C_\sigma Bf)(z) + \frac{\bar{d}f(0)}{-bz+d} $$

$$ C^*_\phi = \nu C_\sigma B + \Lambda_0, \quad \text{where} \quad (\Lambda_0 f)(z) = \frac{f(0)}{1 - \phi(0)z}. $$
Rationally Induced Adjoint Composition Operators on $H(U)$

Setting the Stage

Regular and Critical Values

A Nice Example

Cowen's Adjoint Formula

HMR Form and Regular Form

Outer-Regular Self-Maps

Strongly Outer-Regular Self-Maps

Regular Form

Recall $\phi(z) = \frac{az+b}{cz+d}$, $\sigma(z) = \frac{\bar{a}z-\bar{c}}{-bz+d}$, $g(z) = \frac{1}{-bz+d}$,

$z\sigma'(z) = g(\bar{c} + \bar{d}\sigma)$.

$$(C^*_\phi f) = MgC_\sigma(\bar{c}Bf + \bar{d}f)$$

$$= \bar{c}gC_\sigma(Bf) + \bar{d}gC_\sigma f$$

$$= \bar{c}gC_\sigma(Bf) + \bar{d}g(f \circ \sigma - f(0) + f(0))$$

$$= \bar{c}gC_\sigma(Bf) + \bar{d}g\sigma \left(\frac{f \circ \sigma - f(0)}{\sigma} \right) + \bar{d}gf(0)$$

$$= g(\bar{c} + \bar{d}\sigma)C_\sigma(Bf) + \bar{d}gf(0)$$

$$= (at z) \ z\sigma'(z)(C_\sigma Bf)(z) + \frac{\bar{d}f(0)}{-bz + d}$$

$$C^*_\phi = \nu C_\sigma B + \Lambda_0$$, where $(\Lambda_0 f)(z) = \frac{f(0)}{1 - \phi(0)z}$.
Regular Form

Recall $\phi(z) = \frac{az+b}{cz+d}$, $\sigma(z) = \frac{\bar{a}z-\bar{c}}{-bz+d}$, $g(z) = \frac{1}{-bz+d}$, $z\sigma'(z) = g(\bar{c} + \bar{d}\sigma)$.

\[
(C_\phi^*f) = Mg\ C_\sigma(\bar{c}Bf + \bar{d}f)
\]

\[
= \bar{c}gC_\sigma(Bf) + \bar{d}g\ C_\sigma f
\]

\[
= \bar{c}gC_\sigma(Bf) + \bar{d}g(f \circ \sigma - f(0) + f(0))
\]

\[
= \bar{c}gC_\sigma(Bf) + \bar{d}g\sigma(f \circ \sigma - f(0)) + \bar{d}gf(0)
\]

\[
= g(\bar{c} + \bar{d}\sigma)C_\sigma(Bf) + \bar{d}gf(0)
\]

\[
= (at \ z) \ z\sigma'(z)(C_\sigma Bf)(z) + \frac{\bar{d}f(0)}{-bz+d}
\]

\[\]

\[
C_\phi^* = \nu C_\sigma B + \Lambda_0, \quad \text{where} \quad (\Lambda_0 f)(z) = \frac{f(0)}{1 - \phi(0)z}
\]
Regular Form

Recall \(\phi(z) = \frac{az+b}{cz+d} \), \(\sigma(z) = \frac{\bar{a}z-\bar{c}}{-bz+d} \), \(g(z) = \frac{1}{-bz+d} \),

\[z\sigma'(z) = g(\bar{c} + \bar{d}\sigma). \]

\[(C^*_\phi f) = Mg C_\sigma (\bar{c}Bf + \bar{d}f) \]

\[= \bar{c}gC_\sigma (Bf) + \bar{d}g f \circ \sigma \]

\[= \bar{c}gC_\sigma (Bf) + \bar{d}g(f \circ \sigma - f(0) + f(0)) \]

\[= \bar{c}gC_\sigma (Bf) + \bar{d}g\sigma \frac{(f \circ \sigma - f(0))}{\sigma} + \bar{d}gf(0) \]

\[= g(\bar{c} + \bar{d}\sigma) C_\sigma (Bf) + \bar{d}gf(0) \]

\[= (at \ z) \ z\sigma'(z)(C_\sigma Bf)(z) + \frac{\bar{d}f(0)}{-bz+d} \]

\[C^*_\phi = \nu C_\sigma B + \Lambda_0, \quad \text{where} \quad (\Lambda_0 f)(z) = \frac{f(0)}{1 - \phi(0)z}. \]
Regular Form

Recall $\phi(z) = \frac{az+b}{cz+d}$, $\sigma(z) = \frac{\bar{a}z-\bar{c}}{-bz+d}$, $g(z) = \frac{1}{-bz+d}$, $z\sigma'(z) = g(\bar{c} + \bar{d}\sigma)$.

\[(C^*_\phi f) = \quad M_g \, C_\sigma (\bar{c} B f + \bar{d} f)\]

\[= \quad \bar{c} g C_\sigma (B f) + \bar{d} g f \circ \sigma\]

\[= \quad \bar{c} g C_\sigma (B f) + \bar{d} g (f \circ \sigma - f(0) + f(0))\]

\[= \quad \bar{c} g C_\sigma (B f) + \bar{d} g \sigma \left(\frac{f \circ \sigma - f(0)}{\sigma} \right) + \bar{d} g f(0)\]

\[= \quad g(\bar{c} + \bar{d}\sigma) C_\sigma (B f) + \bar{d} g f(0)\]

\[= \quad (at \ z) \quad z\sigma'(z)(C_\sigma B f)(z) + \frac{\bar{d} f(0)}{-bz+d}\]

\[C^*_\phi = \nu C_\sigma B + \Lambda_0, \quad \text{where} \quad (\Lambda_0 f)(z) = \frac{f(0)}{1 - \phi(0)z}.\]
Regular Form

Recall $\phi(z) = \frac{az+b}{cz+d}$, $\sigma(z) = \frac{\bar{az}-\bar{c}}{-bz+d}$, $g(z) = \frac{1}{-bz+d}$,

$z\sigma'(z) = g(\bar{c} + \bar{d}\sigma)$.

$$(C^*_\phi f) = Mg C_{\sigma}(\bar{c}Bf + \bar{d}f)$$

$$= \bar{c}gC_{\sigma}(Bf) + \bar{d}g f \circ \sigma$$

$$= \bar{c}gC_{\sigma}(Bf) + \bar{d}g(f \circ \sigma - f(0) + f(0))$$

$$= \bar{c}gC_{\sigma}(Bf) + \bar{d}g\frac{(f \circ \sigma - f(0))}{\sigma} + \bar{d}gf(0)$$

$$= g(\bar{c} + \bar{d}\sigma)C_{\sigma}(Bf) + \bar{d}gf(0)$$

$$= (at \ z) \ z\sigma'(z)(C_{\sigma}Bf)(z) + \frac{\bar{d}f(0)}{-bz+d}$$

$C^*_\phi = \nu C_{\sigma}B + \Lambda_0$, where $(\Lambda_0 f)(z) = \frac{f(0)}{1 - \phi(0)z}$.
Regular Form

Recall $\phi(z) = \frac{az + b}{cz + d}$, $\sigma(z) = \frac{a\bar{z} - \bar{c}}{-bz + d}$, $g(z) = \frac{1}{-bz + d}$,

$z\sigma'(z) = g(\bar{c} + \bar{d}\sigma)$.

$$(C^*_\phi f) = Mg C_\sigma(\bar{c}Bf + \bar{d}f)$$

$$= \bar{c}gC_\sigma(Bf) + \bar{d}g f \circ \sigma$$

$$= \bar{c}gC_\sigma(Bf) + \bar{d}g(f \circ \sigma - f(0) + f(0))$$

$$= \bar{c}gC_\sigma(Bf) + \bar{d}g\sigma C_\sigma(Bf) + \bar{d}gf(0)$$

$$= g(\bar{c} + \bar{d}\sigma)C_\sigma(Bf) + \bar{d}gf(0)$$

$$= (at \ z) \ z\sigma'(z)(C_\sigma Bf)(z) + \frac{\bar{d}f(0)}{-bz + d}$$

$$C^*_\phi = \nu C_\sigma B + \Lambda_0,$$

where $(\Lambda_0 f)(z) = \frac{f(0)}{1 - \phi(0)z}$.
Regular Form

Recall \(\phi(z) = \frac{az+b}{cz+d} \), \(\sigma(z) = \frac{-\bar{a}z-\bar{c}}{-bz+d} \), \(g(z) = \frac{1}{-bz+d} \),
\(z\sigma'(z) = g(\bar{c} + \bar{d}\sigma) \).

\[
(C^*_\phi f) = Mg C_\sigma(\bar{c}Bf + \bar{d}f)
\]

\[
= \bar{c}gC_\sigma(Bf) + \bar{d}g f \circ \sigma
\]

\[
= \bar{c}gC_\sigma(Bf) + \bar{d}g(f \circ \sigma - f(0) + f(0))
\]

\[
= \bar{c}gC_\sigma(Bf) + \bar{d}g\sigma C_\sigma(Bf) + \bar{d}gf(0)
\]

\[
= g(\bar{c} + \bar{d}\sigma)C_\sigma(Bf) + \bar{d}gf(0)
\]

\[
= (at z) z\sigma'(z)(C_\sigma Bf)(z) + \frac{\bar{d}f(0)}{-bz + d}
\]

\[
C^*_\phi = \nu C_\sigma B + \Lambda_0, \quad \text{where} \quad (\Lambda_0 f)(z) = \frac{f(0)}{1 - \phi(0)z}.
\]
Regular Form

Recall $\phi(z) = \frac{az+b}{cz+d}$, $\sigma(z) = \frac{\bar{a}z-\bar{c}}{-bz+d}$, $g(z) = \frac{1}{-bz+d}$,

$z\sigma'(z) = g(\bar{c} + \bar{d}\sigma)$.

$$(C_\phi^* f) = Mg C_\sigma(\bar{c}Bf + \bar{d}f)$$

$$= \bar{c}gC_\sigma(Bf) + \bar{d}g f \circ \sigma$$

$$= \bar{c}gC_\sigma(Bf) + \bar{d}g(f \circ \sigma - f(0) + f(0))$$

$$= \bar{c}gC_\sigma(Bf) + \bar{d}gC_\sigma(Bf) + \bar{d}gf(0)$$

$$= g(\bar{c} + \bar{d}\sigma)C_\sigma(Bf) + \bar{d}gf(0)$$

$$= (at \ z) \ z\sigma'(z)(C_\sigma Bf)(z) + \frac{\bar{d}f(0)}{-bz+d}$$

$C_\phi^* = \nu C_\sigma B + \Lambda_0$, \hspace{1em} where \hspace{1em} $(\Lambda_0 f)(z) = \frac{f(0)}{1 - \phi(0)z}$.
Regular Form

Recall \(\phi(z) = \frac{az+b}{cz+d} \), \(\sigma(z) = \frac{-az-c}{-bz+d} \), \(g(z) = \frac{1}{-bz+d} \),
\[z\sigma'(z) = g(\bar{c} + \bar{d}\sigma). \]
\[(C^*_\phi f) = Mg C_\sigma(\bar{c}Bf + \bar{d}f) \]
\[= \bar{c}gC_\sigma(Bf) + \bar{d}g f \circ \sigma \]
\[= \bar{c}gC_\sigma(Bf) + \bar{d}g(f \circ \sigma - f(0) + f(0)) \]
\[= \bar{c}gC_\sigma(Bf) + \bar{d}g_\sigma C_\sigma(Bf) + \bar{d}gf(0) \]
\[= g(\bar{c} + \bar{d}\sigma)C_\sigma(Bf) + \bar{d}gf(0) \]
\[= (\text{at } z) \quad z\sigma'(z)(C_\sigma Bf)(z) + \frac{\bar{d}f(0)}{-bz+d} \]

\[C^*_\phi = \nu C_\sigma B + \Lambda_0, \quad \text{where} \quad (\Lambda_0 f)(z) = \frac{f(0)}{1 - \phi(0)z}. \]
Regular Form

Recall $\phi(z) = \frac{az+b}{cz+d}$, $\sigma(z) = \frac{-az-c}{-bz+d}$, $g(z) = \frac{1}{-bz+d}$,

$z\sigma'(z) = g(\bar{c} + \bar{d}\sigma)$.

$$(C_{\phi}^* f) = M_g C_{\sigma}(\bar{c}Bf + \bar{d}f)$$

$$= \bar{c}gC_{\sigma}(Bf) + \bar{d}g f \circ \sigma$$

$$= \bar{c}gC_{\sigma}(Bf) + \bar{d}g(f \circ \sigma - f(0) + f(0))$$

$$= \bar{c}gC_{\sigma}(Bf) + \bar{d}g_{\sigma}C_{\sigma}(Bf) + \bar{d}gf(0)$$

$$= g(\bar{c} + \bar{d}\sigma)C_{\sigma}(Bf) + \bar{d}gf(0)$$

$$= (at z) \ z\sigma'(z)(C_{\sigma}Bf)(z) + \frac{\bar{d}f(0)}{-bz + d}$$

$$C_{\phi}^* = \nu C_{\sigma}B + \Lambda_0$$, where $(\Lambda_0 f)(z) = \frac{f(0)}{1 - \phi(0)z}$.
Regular Form

Recall \(\phi(z) = \frac{az+b}{cz+d} \), \(\sigma(z) = \frac{\bar{a}z-\bar{c}}{-bz+d} \), \(g(z) = \frac{1}{-bz+d} \),
\(z\sigma'(z) = g(\bar{c} + \bar{d}\sigma) \).

\[
(C_\phi^* f) = M_g C_\sigma(\bar{c}Bf + \bar{d}f)
\]

\[
= \bar{c}gC_\sigma(Bf) + \bar{d}g f \circ \sigma
\]

\[
= \bar{c}gC_\sigma(Bf) + \bar{d}g(f \circ \sigma - f(0) + f(0))
\]

\[
= \bar{c}gC_\sigma(Bf) + \bar{d}g_\sigma C_\sigma(Bf) + \bar{d}gf(0)
\]

\[
= g(\bar{c} + \bar{d}\sigma) C_\sigma(Bf) + \bar{d}gf(0)
\]

\[
= (at \ z) \ z\sigma'(z)(C_\sigma Bf)(z) + \frac{\bar{d}f(0)}{-bz+d}
\]

\[
C_\phi^* = \nu C_\sigma B + \Lambda_0, \quad \text{where} \quad (\Lambda_0 f)(z) = \frac{f(0)}{1 - \phi(0)z}.
\]
Rationally Induced Adjoint Composition Operators on $H(U)$

Setting the Stage

Regular and Critical Values

A Nice Example

Cowen’s Adjoint Formula

HMR Form and Regular Form

Outer-Regular Self-Maps

Strongly Outer-Regular Self-Maps

Regular Form

Recall $\phi(z) = \frac{az+b}{cz+d}$, $\sigma(z) = \frac{-\bar{a}z-\bar{c}}{-bz+d}$, $g(z) = \frac{1}{-bz+d}$, $z\sigma'(z) = g(\bar{c} + \bar{d}\sigma)$.

$$(C^*_\phi f) = Mg C_\sigma(\bar{c}Bf + \bar{d}f)$$

$$= \bar{c}gC_\sigma(Bf) + \bar{d}g f \circ \sigma$$

$$= \bar{c}gC_\sigma(Bf) + \bar{d}g(f \circ \sigma - f(0) + f(0))$$

$$= \bar{c}gC_\sigma(Bf) + \bar{d}g\sigma C_\sigma(Bf) + \bar{d}gf(0)$$

$$= g(\bar{c} + \bar{d}\sigma)C_\sigma(Bf) + \bar{d}gf(0)$$

$$= (at \ z) \ z\sigma'(z)(C_\sigma Bf)(z) + \frac{f(0)}{1 - \frac{b}{d}z}$$

$$C^*_\phi = \nu C_\sigma B + \Lambda_0, \ \ \text{where} \ \ (\Lambda_0 f)(z) = \frac{f(0)}{1 - \phi(0)z}. $$
Regular Form

Recall \(\phi(z) = \frac{az + b}{cz + d} \), \(\sigma(z) = \frac{-\bar{a}z - \bar{c}}{-bz + d} \), \(g(z) = \frac{1}{-bz + d} \),

\[z\sigma'(z) = g(\bar{c} + \bar{d}\sigma). \]

\[(C^*_\phi f) = M_g C_\sigma(\bar{c}Bf + \bar{d}f) \]

\[= \bar{c}gC_\sigma(Bf) + \bar{d}g f \circ \sigma \]

\[= \bar{c}gC_\sigma(Bf) + \bar{d}g(f \circ \sigma - f(0) + f(0)) \]

\[= \bar{c}gC_\sigma(Bf) + \bar{d}g\sigma C_\sigma(Bf) + \bar{d}gf(0) \]

\[= g(\bar{c} + \bar{d}\sigma)C_\sigma(Bf) + \bar{d}gf(0) \]

\[= (at z) \quad z\sigma'(z)(C_\sigma Bf)(z) + \frac{f(0)}{1 - \phi(0)z} \]

\[C^*_\phi = \nu C_\sigma B + \Lambda_0, \quad \text{where} \quad (\Lambda_0 f)(z) = \frac{f(0)}{1 - \phi(0)z}. \]
Regular Form

Recall \(\phi(z) = \frac{az+b}{cz+d} \), \(\sigma(z) = \frac{\bar{a}z-\bar{c}}{-bz+d} \), \(g(z) = \frac{1}{-bz+d} \),
\[z\sigma'(z) = g(\bar{c} + \bar{d}\sigma). \]

\[(C_\phi^* f) = M_g \, C_\sigma(\bar{c}Bf + \bar{d}f) = \bar{c}gC_\sigma(Bf) + \bar{d}g(f \circ \sigma)
= \bar{c}gC_\sigma(Bf) + \bar{d}g(f \circ \sigma - f(0) + f(0)) = \bar{c}gC_\sigma(Bf) + \bar{d}gC_\sigma(Bf) + \bar{d}gf(0)
= g(\bar{c} + \bar{d}\sigma)C_\sigma(Bf) + \bar{d}gf(0) = (at \, z) \, z\sigma'(z)(C_\sigma Bf)(z) + \frac{f(0)}{1 - \phi(0)z} \]

\[C_\phi^* = \nu C_\sigma B + \Lambda_0, \quad \text{where} \quad (\Lambda_0 f)(z) = \frac{f(0)}{1 - \phi(0)z}. \]
Regular Form

Recall $\phi(z) = \frac{az+b}{cz+d}$, $\sigma(z) = \frac{\bar{a}z-\bar{c}}{-bz+d}$, $g(z) = \frac{1}{-bz+d}$,

$z\sigma'(z) = g(\bar{c} + \bar{d}\sigma)$.

$$(C^*_\phi f) = M_g C_\sigma(\bar{c}Bf + \bar{d}f)$$

$$= \bar{c}gC_\sigma(Bf) + \bar{d}g f \circ \sigma$$

$$= \bar{c}gC_\sigma(Bf) + \bar{d}g(f \circ \sigma - f(0) + f(0))$$

$$= \bar{c}gC_\sigma(Bf) + \bar{d}g\sigma C_\sigma(Bf) + \bar{d}gf(0)$$

$$= g(\bar{c} + \bar{d}\sigma)C_\sigma(Bf) + \bar{d}gf(0)$$

$$= (at \ z) \ z\sigma'(z)(C_\sigma Bf)(z) + \frac{f(0)}{1 - \phi(0)z}$$

$C^*_\phi = \nu C_\sigma B + \Lambda_0$, where $(\Lambda_0 f)(z) = \frac{f(0)}{1 - \phi(0)z}$. Regular - Form
HMR Form and Regular Form

Let ϕ be a rational self-map of \mathbb{U} of degree d. For all but at most finitely many points z_0 in \mathbb{U}, $\phi^{-1}(\{1/\bar{z}_0\})$ will contain d distinct elements in $\hat{\mathbb{C}} \setminus \mathbb{U}^-$: p_1, \ldots, p_d. Since $\phi'(p_j) \neq 0$, $\phi|_{N(p_j)}$ will be invertible. Thus, on a sufficiently small open disk D about z_0, the following functions will be holomorphic:

$$\sigma_j(z) = \frac{1}{\left(\phi|_{N(p_j)}\right)^{-1}(1/\bar{z})}, \quad j = 1, 2, \ldots, d. \quad (\sigma(D) \subseteq \mathbb{U})$$

Local HMR Form ($\phi(\infty) \in \mathbb{U}$):

$$(C^*_\phi f)(z) = \sum_{j=1}^{d} \frac{z \sigma'_j(z)}{\sigma_j(z)} (C_{\sigma_j} f)(z) + \frac{f(0)}{1 - \phi(\infty)z}$$

Local Regular Form:

$$(C^*_\phi f)(z) = \sum_{j=1}^{d} z \sigma'_j(z) \left(C_{\sigma_j} (Bf) \right)(z) + \frac{f(0)}{1 - \phi(0)z}$$
HMR Form and Regular Form

Let \(\phi \) be a rational self-map of \(\mathbb{U} \) of degree \(d \). For all but at most finitely many points \(z_0 \) in \(\mathbb{U} \), \(\phi^{-1}(\{1/\bar{z}_0\}) \) will contain \(d \) distinct elements in \(\mathbb{C} \setminus \mathbb{U}^- : p_1, \ldots, p_d \). Since \(\phi'(p_j) \neq 0 \), \(\phi|_{N(p_j)} \) will be invertible. Thus, on a sufficiently small open disk \(D \) about \(z_0 \), the following functions will be holomorphic:

\[
\sigma_j(z) = \frac{1}{\left(\phi|_{N(p_j)}\right)^{-1}(1/\bar{z})}, \quad j = 1, 2, \ldots, d. \quad (\sigma(D) \subseteq \mathbb{U})
\]

Local HMR Form \((\phi(\infty) \in \mathbb{U})\):

\[
(C^*_\phi f)(z) = \sum_{j=1}^{d} \frac{z\sigma'_j(z)}{\sigma_j(z)} (C_{\sigma_j} f)(z) + \frac{f(0)}{1 - \phi(\infty)z}
\]

Local Regular Form:

\[
(C^*_\phi f)(z) = \sum_{j=1}^{d} z\sigma'_j(z) \left(C_{\sigma_j}(Bf) \right)(z) + \frac{f(0)}{1 - \phi(0)z}
\]
HMR Form and Regular Form

Let \(\phi \) be a rational self-map of \(\mathbb{U} \) of degree \(d \). For all but at most finitely many points \(z_0 \) in \(\mathbb{U} \), \(\phi^{-1}(\{1/\bar{z}_0\}) \) will contain \(d \) distinct elements in \(\hat{\mathbb{C}} \setminus \mathbb{U}^{-} : p_1, \ldots, p_d \). Since \(\phi'(p_j) \neq 0 \), \(\phi|_{N(p_j)} \) will be invertible. Thus, on a sufficiently small open disk \(D \) about \(z_0 \), the following functions will be holomorphic:

\[
\sigma_j(z) = \frac{1}{\left(\phi|_{N(p_j)}\right)^{-1} \left(1/\bar{z}\right)}, \quad j = 1, 2, \ldots, d. \quad (\sigma(D) \subseteq \mathbb{U})
\]

Local HMR Form (\(\phi(\infty) \in \mathbb{U} \)):

\[
(C^*_\phi f)(z) = \sum_{j=1}^{d} \frac{z \sigma'_j(z)}{\sigma_j(z)} (C_{\sigma_j} f)(z) + \frac{f(0)}{1 - \phi(\infty) z}
\]

Local Regular Form:

\[
(C^*_\phi f)(z) = \sum_{j=1}^{d} z \sigma'_j(z) \left(C_{\sigma_j}(Bf) \right)(z) + \frac{f(0)}{1 - \phi(0) z}
\]
Definition. Call a rational self-map ϕ of \mathbb{U} outer regular provided every critical value of ϕ lies in \mathbb{U}; hence, every point in $\hat{\mathbb{C}} \setminus \mathbb{U}$ is regular.

Observation: Since ϕ has only finitely many critical values, if ϕ is outer regular, then there is an $r < 1$ such that every point of $\hat{\mathbb{C}} \setminus (r\mathbb{U})$ is regular. Thus by the Monodromy Theorem, any local inverse ϕ^{-1} defined near a point $1/\bar{z} \in \{|z| > 1\}$ has a holomorphic continuation to a branch of ϕ^{-1} defined on the simply connected domain $\hat{\mathbb{C}} \setminus (r\mathbb{U})^{-}$.

Examples. $\phi_1(z) = 1/(3 - z - z^2)$ with critical values 0 and $4/13$ is outer regular.

$\phi_2(z) = (z^2 + z)/(3 - z^2)$ with critical values ≈ -0.09175 and ≈ -0.90825 is outer regular.

$\phi_3(z) = z^2$ with critical values 0 and ∞ is not outer regular.
Outer Regular Rational Self-Maps

Definition. Call a rational self-map ϕ of \mathbb{U}outer regularprovided every critical value of ϕ lies in \mathbb{U}; hence, every point in $\hat{\mathbb{C}} \setminus \mathbb{U}$ is regular.

Observation: Since ϕ has only finitely many critical values, if ϕ is outer regular, then there is an $r < 1$ such that every point of $\hat{\mathbb{C}} \setminus (r\mathbb{U})$ is regular. Thus by the Monodromy Theorem, any local inverse ϕ^{-1} defined near a point $1/\bar{z} \in \{|z| > 1\}$ has a holomorphic continuation to a branch of ϕ^{-1} defined on the simply connected domain $\hat{\mathbb{C}} \setminus (r\mathbb{U})$.

Examples. $\phi_1(z) = 1/(3 - z - z^2)$ with critical values 0 and $4/13$ is outer regular.
$\phi_2(z) = (z^2 + z)/(3 - z^2)$ with critical values ≈ -0.09175 and ≈ -0.90825 is outer regular.
$\phi_3(z) = z^2$ with critical values 0 and ∞ is not outer regular.
Outer Regular Rational Self-Maps

Definition. Call a rational self-map ϕ of \mathbb{U} outer regular provided every critical value of ϕ lies in \mathbb{U}; hence, every point in $\hat{\mathbb{C}} \setminus \mathbb{U}$ is regular.

Observation: Since ϕ has only finitely many critical values, if ϕ is outer regular, then there is an $r < 1$ such that every point of $\hat{\mathbb{C}} \setminus (r\mathbb{U})$ is regular. Thus by the Monodromy Theorem, any local inverse ϕ^{-1} defined near a point $1/\bar{z} \in \{|z| > 1\}$ has a holomorphic continuation to a branch of ϕ^{-1} defined on the simply connected domain $\hat{\mathbb{C}} \setminus (r\mathbb{U})^{-}$.

Examples. $\phi_1(z) = 1/(3 - z - z^2)$ with critical values 0 and $4/13$ is outer regular.

$\phi_2(z) = (z^2 + z)/(3 - z^2)$ with critical values ≈ -0.09175 and ≈ -0.90825 is outer regular.

$\phi_3(z) = z^2$ with critical values 0 and ∞ is not outer regular.
Outer Regular Rational Self-Maps

Definition. Call a rational self-map ϕ of \mathbb{U} *outer regular* provided every critical value of ϕ lies in \mathbb{U}; hence, every point in $\hat{\mathbb{C}} \setminus \mathbb{U}$ is regular.

Observation: Since ϕ has only finitely many critical values, if ϕ is outer regular, then there is an $r < 1$ such that every point of $\hat{\mathbb{C}} \setminus (r\mathbb{U})$ is regular. Thus by the Monodromy Theorem, any local inverse ϕ^{-1} defined near a point $1/\bar{z} \in \{|z| > 1\}$ has a holomorphic continuation to a branch of ϕ^{-1} defined on the simply connected domain $\hat{\mathbb{C}} \setminus (r\mathbb{U})^{-}$.

Examples. $\phi_1(z) = 1/(3 - z - z^2)$ with critical values 0 and $4/13$ is outer regular.

$\phi_2(z) = (z^2 + z)/(3 - z^2)$ with critical values ≈ -0.09175 and ≈ -0.90825 is outer regular.

$\phi_3(z) = z^2$ with critical values 0 and ∞ is not outer regular.
Outer Regular Rational Self-Maps

Definition. Call a rational self-map ϕ of U *outer regular* provided every critical value of ϕ lies in U; hence, every point in $\hat{C} \setminus U$ is regular.

Observation: Since ϕ has only finitely many critical values, if ϕ is outer regular, then there is an $r < 1$ such that every point of $\hat{C} \setminus (rU)$ is regular. Thus by the Monodromy Theorem, any local inverse ϕ^{-1} defined near a point $1/\bar{z} \in \{|z| > 1\}$ has a holomorphic continuation to a branch of ϕ^{-1} defined on the simply connected domain $\hat{C} \setminus (rU)^-$.

Examples. $\phi_1(z) = 1/(3 - z - z^2)$ with critical values 0 and $4/13$ is outer regular.

$\phi_2(z) = (z^2 + z)/(3 - z^2)$ with critical values ≈ -0.09175 and ≈ -0.90825 is outer regular.

$\phi_3(z) = z^2$ with critical values 0 and ∞ is not outer regular.
Outer Regular Rational Self-Maps

Definition. Call a rational self-map ϕ of \mathbb{U} *outer regular* provided every critical value of ϕ lies in \mathbb{U}; hence, every point in $\hat{\mathbb{C}} \setminus \mathbb{U}$ is regular.

Observation: Since ϕ has only finitely many critical values, if ϕ is outer regular, then there is an $r < 1$ such that every point of $\hat{\mathbb{C}} \setminus (r\mathbb{U})$ is regular. Thus by the Monodromy Theorem, any local inverse ϕ^{-1} defined near a point $1/\bar{z} \in \{|z| > 1\}$ has a holomorphic continuation to a branch of ϕ^{-1} defined on the simply connected domain $\hat{\mathbb{C}} \setminus (r\mathbb{U})$. Exampl...
Theorem (BS)

If \(\phi \) has degree \(d \) and is outer regular, there exist self-maps of \(\mathbb{U} \), \(\{\sigma_j\}_{j=1}^d \), holomorphic on the closure of \(\mathbb{U} \) such that

\[
C^*_\phi = \sum_{j=1}^{d} M_{h_j} C_{\sigma_j} B + \Lambda_0,
\]

where \(h_j(z) = z\sigma'_j(z) \) and \((\Lambda_0 f)(z) = f(0)/(1 - \overline{\phi(0)}z)\).

Theorem (BS)

If \(\phi \) is outer regular and maps exactly one point of \(\partial \mathbb{U} \) to \(\partial \mathbb{U} \), then \(C^*_\phi \) is a compact perturbation of an operator of the form \(M_{h} C_{\sigma} B \) (backward shift followed by a weighted composition operator).

Examples: \(\phi_1(z) = (z^2 + z)/(3 - z^2) \) and \(\phi_2(z) = 1/(3 - z - z^2) \) satisfy the hypotheses of both theorems.
Theorem (BS)

If \(\phi \) has degree \(d \) and is outer regular, there exist self-maps of \(\mathbb{U} \), \(\{\sigma_j\}_{j=1}^d \), holomorphic on the closure of \(\mathbb{U} \) such that

\[
C^*_\phi = \sum_{j=1}^{d} M_{h_j} C_{\sigma_j} B + \Lambda_0,
\]

where \(h_j(z) = z\sigma_j'(z) \) and \((\Lambda_0 f)(z) = f(0)/(1 - \overline{\phi(0)}z) \).

Here \(\sigma_j(z) = \frac{1}{\phi_j^{-1}(1/\overline{z})} \) where \(\phi_j^{-1} \) are branches of \(\phi^{-1} \).

Theorem (BS)

If \(\phi \) is outer regular and maps exactly one point of \(\partial \mathbb{U} \) to \(\partial \mathbb{U} \), then \(C^*_\phi \) is a compact perturbation of an operator of the form \(M_h C_{\sigma} B \) (backward shift followed by a weighted composition operator).

Examples: \(\phi_1(z) = (z^2 + z)/(3 - z^2) \) and \(\phi_2(z) = 1/(3 - z - z^2) \) satisfy the hypotheses of both...
Theorem (BS)

If ϕ has degree d and is outer regular, there there exist self-maps of \mathbb{U}, $\{\sigma_j\}_{j=1}^d$, holomorphic on the closure of \mathbb{U} such that

$$C_\phi^* = \sum_{j=1}^d M_h C_{\sigma_j} B + \Lambda_0,$$

where $h_j(z) = z\sigma_j'(z)$ and $(\Lambda_0 f)(z) = f(0)/(1 - \overline{\phi(0)}z)$.

Theorem (BS)

If ϕ is outer regular and maps exactly one point of $\partial \mathbb{U}$ to $\partial \mathbb{U}$, then C_ϕ^* is a compact perturbation of an operator of the form $M_h C_{\sigma} B$ (backward shift followed by a weighted composition operator).

Examples: $\phi_1(z) = (z^2 + z)/(3 - z^2)$ and $\phi_2(z) = 1/(3 - z - z^2)$ satisfy the hypotheses of both theorems.
Theorem (BS)

If ϕ has degree d and is outer regular, there there exist self-maps of \mathbb{U}, $\{\sigma_j\}_{j=1}^d$, holomorphic on the closure of \mathbb{U} such that

$$C^*_\phi = \sum_{j=1}^d M_{h_j} C_{\sigma_j} B + \Lambda_0,$$

where $h_j(z) = z \sigma_j'(z)$ and $(\Lambda_0 f)(z) = f(0)/(1 - \bar{\phi(0)}z)$.

Theorem (BS)

If ϕ is outer regular and maps exactly one point of $\partial \mathbb{U}$ to $\partial \mathbb{U}$, then C^*_ϕ is a compact perturbation of an operator of the form $M_h C_\sigma B$ (backward shift followed by a weighted composition operator).

Examples: $\phi_1(z) = (z^2 + z)/(3 - z^2)$ and $\phi_2(z) = 1/(3 - z - z^2)$ satisfy the hypotheses of both theorems.
Definition. If a rational self-map ϕ of U is outer regular and $\phi(\infty) \in U$, the ϕ is strongly outer regular

Observation : $\phi(\infty) \in U$ makes Λ_∞ defined by
$$(\Lambda_\infty f)(z) = \frac{1}{1 - \phi(\infty)z}$$
a legitimate rank-one operator on $H^2(U)$.

Also if $\sigma_j(z) = \frac{1}{\phi_j^{-1}(1/\bar{z})}$, will not vanish on the closed disk:

$\sigma_j(z) = 0 \implies \phi_j^{-1}(1/\bar{z}) = \infty \implies \phi(\infty) = 1/\bar{z} \implies 1/\bar{z} \in U \implies |z| > 1.$
Theorem (BS)

If ϕ has degree d and is strongly outer regular, there exist self-maps of \mathbb{U}, $\{\sigma_j\}_{j=1}^d$, holomorphic and nonzero the closure of \mathbb{U} such that

$$C_\phi^* = \sum_{j=1}^d M_{g_j} C_{\sigma_j} + \Lambda_\infty,$$

where $g_j(z) = z\sigma'_j(z)/\sigma_j(z)$ and

$$(\Lambda_\infty f)(z) = f(0)/(1 - \phi(\infty)z).$$

Hence, C_ϕ^* is a rank-one perturbation of a sum of weighed composition operators.

Theorem (BS)

If ϕ is strongly outer regular and maps exactly one point of $\partial \mathbb{U}$ to $\partial \mathbb{U}$, then C_ϕ^* is a compact perturbation of a weighted composition operator.

Examples, Both apply to $\phi(z) = \frac{1}{3 - z - z^2}$ and the first to $\phi(z) = z/(3 - z^n)$ for all $n \geq 2$.
Theorem (BS)

If \(\phi \) has degree \(d \) and is strongly outer regular, there there exist self-maps of \(\mathbb{U} \), \(\{\sigma_j\}_{j=1}^d \), holomorphic and nonzero the closure of \(\mathbb{U} \) such that

\[
C_{\phi}^* = \sum_{j=1}^{d} M_{g_j} C_{\sigma_j} + \Lambda_{\infty},
\]

where \(g_j(z) = z\sigma'_j(z)/\sigma_j(z) \) and

\[
(\Lambda_{\infty} f)(z) = f(0)/(1 - \phi(\infty)z).
\]

Hence, \(C_{\phi}^* \) is a rank-one perturbation of a sum of weighed composition operators.

Here \(\sigma_j(z) = \frac{1}{\phi_j^{-1}(1/\bar{z})} \) where \(\phi_j^{-1} \) are branches of \(\phi^{-1} \).

Theorem (BS)

If \(\phi \) is strongly outer regular and maps exactly one point of \(\partial \mathbb{U} \) to \(\partial \mathbb{U} \), then \(C_{\phi}^* \) is a compact perturbation of a weighted composition operator.
Theorem (BS)

If ϕ has degree d and is strongly outer regular, there exist self-maps of \mathbb{U}, $\{\sigma_j\}_{j=1}^d$, holomorphic and nonzero the closure of \mathbb{U} such that

$$C_\phi^* = \sum_{j=1}^d M_{g_j} C_{\sigma_j} + \Lambda_\infty,$$

where $g_j(z) = z\sigma'_j(z)/\sigma_j(z)$ and

$$(\Lambda_\infty f)(z) = f(0)/(1 - \phi(\infty)z).$$

Hence, C_ϕ^* is a rank-one perturbation of a sum of weighed composition operators.

Theorem (BS)

If ϕ is strongly outer regular and maps exactly one point of $\partial\mathbb{U}$ to $\partial\mathbb{U}$, then C_ϕ^* is a compact perturbation of a weighted composition operator.

Examples, Both apply to $\phi(z) = 1/(3 - z - z^2)$ and the first to $\phi(z) = z/(3 - z^n)$ for all $n \geq 2$.
Theorem (BS)

If \(\phi \) has degree \(d \) and is strongly outer regular, there exist self-maps of \(\mathbb{U} \), \(\{ \sigma_j \}_{j=1}^d \), holomorphic and nonzero the closure of \(\mathbb{U} \) such that

\[
C_\phi^* = \sum_{j=1}^{d} M_{g_j} C_{\sigma_j} + \Lambda_\infty,
\]

where \(g_j(z) = z\sigma_j'(z)/\sigma_j(z) \) and

\[
(\Lambda_\infty f)(z) = f(0)/(1 - \phi(\infty)z).
\]

Hence, \(C_\phi^* \) is a rank-one perturbation of a sum of weighed composition operators.

Theorem (BS)

If \(\phi \) is strongly outer regular and maps exactly one point of \(\partial \mathbb{U} \) to \(\partial \mathbb{U} \), then \(C_\phi^* \) is a compact perturbation of a weighted composition operator.

Examples, Both apply to \(\phi(z) = \frac{1}{3-z-z^2} \) and the first to \(\phi(z) = z/(3 - z^n) \) for all \(n \geq 2 \).
The End