Interpolating Measures for Subnormal Operators

NATHAN S. FELDMAN

If \(\mu \in M^+(K) \) is a positive regular Borel measure supported on a compact set \(K \) in the complex plane, then let \(R^2(K, \mu) \) denote the closure of \(\text{Rat}(K) \), the rational functions with poles off \(K \), in \(L^2(\mu) \). If we define \(S_{K, \mu} = M_z \) on \(R^2(K, \mu) \), then \(S_{K, \mu} \) is a typical rationally cyclic subnormal operator. When \(K \) is polynomially convex, then \(R^2(K, \mu) = P^2(\mu) \), the closure of the analytic polynomials in \(L^2(\mu) \), and \(S_{\mu} := S_{K, \mu} \) will be a cyclic subnormal operator.

If \(\lambda \in K \), then \(\lambda \) is a bounded point evaluation (b.p.e.) for \(S_{K, \mu} = M_z \) on \(R^2(K, \mu) \) if there is a constant \(C > 0 \) such that \(|f(\lambda)| \leq C \| f \|_{L^2(\mu)} \) for all \(f \in \text{Rat}(K) \). This is equivalent to requiring that the densely defined linear operator \(A : \text{Rat}(K) \rightarrow \mathbb{C} \) given by \(A(f) = f(\lambda) \) extends to an (onto) bounded linear operator \(A : R^2(K, \mu) \rightarrow \mathbb{C} \) (the extension is also called \(A \)).

Thomson’s Theorem [1] says that if \(S_{\mu} = M_z \) on \(P^2(\mu) \) is pure, then b.p.e.’s always exist for \(S_{\mu} \). However it is known (see [2]) that b.p.e.’s need not exist for \(R^2(K, \mu) \) spaces. We are looking to generalize the idea of a b.p.e. for a \(R^2(K, \mu) \) space to the notion of an interpolating measure for any subnormal operator.

For a measure \(\nu \in M^+(K), \nu \) will be an interpolating measure for \(S_{K, \mu} = M_z \) on \(R^2(K, \mu) \) if the densely defined map \(A : \text{Rat}(K) \rightarrow L^2(\nu) \) defined by \(A(f) = f \) extends to be an (into and) onto bounded linear operator \(A : R^2(K, \mu) \rightarrow L^2(\nu) \).

Question: If \(K \) is a compact set in the complex plane and \(\mu \) a measure on \(K \), then does \(S_{K, \mu} = M_z \) on \(R^2(K, \mu) \) have an interpolating measure?

For an arbitrary operator \(S \) on a Hilbert space \(H \), a measure \(\nu \) is said to be an interpolating measure for \(S \) if there exists an (into and) onto bounded linear operator \(A : H \rightarrow L^2(\nu) \) such that \(AS = N_\nu A \), where \(N_\nu = M_z \) on \(L^2(\nu) \).

Question: If \(S \) is a subnormal operator, then does \(S \) have an interpolating measure? If not, which subnormal operators have interpolating measures?

Theorems:

(a) If \(S_{\mu} = M_z \) on \(P^2(\mu) \) is pure and \(G \) is the set of b.p.e.’s for \(S_{\mu} \), then a measure \(\nu \) is an interpolating measure for \(S_{\mu} \) if and only if \(\nu \) is a discrete measure carried by \(G \) whose atoms form a \(P^2(\mu) \) interpolating sequence.

(b) If \(S = M_z \) on \(H^2(G) \) where \(G = \mathbb{D} \setminus [0, 1] \), then Lebesgue measure on \([0, 1]\) is an interpolating measure for \(S \).

(c) If \(S = M_z \) on \(L^2(\mathbb{D})_+ \) is the dual of the Bergman operator, then for any compact set \(K \subseteq \mathbb{D} \), \(\nu = \text{area measure on } K \) is an interpolating measure for \(S \).

Question: Are there bounded regions \(G \) in \(\mathbb{C} \) such that \(S = M_z \) on the Bergman space \(L^2_a(G) \) has a continuous interpolating measure that is supported on \(\partial G \) ?

References
