Arithmetic Functions Evaluated at Factorials!

Dan Baczkowski

(joint work with M. Filaseta, F. Luca, and O. Trifonov)
(F. Luca)
Fix \(r \in \mathbb{Q} \), there are a finite number of positive integers \(n \) and \(m \) for which

\[
f(n!) = r \cdot m!
\]

where \(f \) is one of \(\tau \), \(\phi \), or \(\sigma \).
Theorem 1. Let \(f \) denote one of the arithmetic functions \(\tau \), \(\phi \) or \(\sigma \), and let \(k \) be a fixed positive integer. Then there are finitely many positive integers \(n, m, a \) and \(b \) such that

\[
b \cdot f(n!) = a \cdot m!, \quad \gcd(a, b) = 1 \quad \text{and} \quad \omega(ab) \leq k.
\]

i.e. the total number of distinct primes dividing the numerator and denominator of the fraction obtained by reducing the quotient \(f(n!)/m! \) tends to infinity as the product \(nm \) tends to infinity.
Theorem 2. There are finitely many positive integers a, b, n and m such that

$$b \cdot \tau(n!) = a \cdot m!, \quad \gcd(a, b) = 1, \quad \omega(b) \leq m^{1/4}$$

and $P_0(a) \leq \frac{\log n}{22},$

where $P_0(a)$ denotes the least prime not dividing a.

Theorem 3. and for $n > 1$

$$b \cdot \phi(n!) = a \cdot m!, \quad \gcd(a, b) = 1 \quad \text{and} \quad \max\{\omega(a), \omega(b)\} \leq \frac{n}{7 \log n}.$$
Theorem 4. Fix $\varepsilon > 0$. Then there are finitely many positive integers a, b, n and m such that

\[b \cdot \sigma(n!) = a \cdot m!, \quad \gcd(a, b) = 1, \quad \omega(ab) \leq n^{0.2-\varepsilon}. \]
Let q be a prime and $\nu_q(N)$ denote the exponent of q in the prime factorization of N.

\[
\sigma(n!) = \prod_{p \leq n} \sigma(p^{\nu_p(n!)}) = \prod_{p \leq n} \frac{p^{\nu_p(n!)} + 1 - 1}{p - 1}
\]

Lemma 1. If $0 < \epsilon < 1/5$ and q is a prime $\leq n^{1/5 - \epsilon}$, then

(i.) $\nu_q(\sigma(n!)) \ll \frac{n \log \log(q + 1)}{q \log n}$

If $0 < \delta < 1/3$ and q is a prime, then

(ii.) $\nu_q\left(\prod_{n^{1-\delta} \leq p \leq n} \sigma(p^{\nu_p(n!)})\right) \ll \frac{n \log \log(q + 1)}{q} + \frac{n^{3\delta} \log n}{\log q}$.
Proof of Theorem for σ:

\[b \cdot \sigma(n!) = a \cdot m!, \quad \gcd(a, b) = 1 \quad \text{and} \quad \omega(ab) \leq n^{0.2-\varepsilon} \]

The proof:

• Show there is a N such that $n \leq N$ holds.

• then we can deduce that $b \cdot \sigma(n!)$ has a bounded number of distinct prime factors (depending only on N).

• implying that m is bounded and, hence, that there are only a finite number of possibilities for the value of $a/b = f(n!)/m!$.

• Given that $\gcd(a, b) = 1$, we can then deduce that there are a finite number of possibilities for the quadruple (n, m, a, b).
\[b \cdot \sigma(n!) = a \cdot m! \]

Set \(c = 1/5 - 2\epsilon \) where \(0 < \epsilon < 1/10 \).

Assume \(n \) is sufficiently large and \(\omega(ab) \leq n^c \).

First, we consider the case that \(\omega(\sigma(n!)) \geq 2n^c \).

Then there exists \(\geq n^c \) distinct primes \(p \) dividing \(\sigma(n!) \) and not dividing \(ab \). Among the first \(2n^c \) primes, \(\exists \) prime \(q \) s.t. \(q \mid \sigma(n!) \) but \(q \nmid ab \).

Moreover, \(q \leq n^{c+\epsilon} \leq n^{1/5-\epsilon} \). Since \(q \) does not divide \(ab \), we have

\[\nu_q(\sigma(n!)) = \nu_q(m!) \geq \frac{m}{q} - 1. \]
\[b \cdot \sigma(n!) = a \cdot m! \]

Lemma 1 (i) now implies

\[m \ll \frac{n \log \log n}{\log n}. \]

The case when \(\omega(\sigma(n!)) < 2n^c \) also gives this. Indeed,

\[\frac{m}{\log m} \ll \pi(m) = \omega(m!) \leq \omega(b \cdot \sigma(n!)) \leq \omega(b) + \omega(\sigma(n!)) \ll n^c \]

implying that \(m \ll n^c \log n \).
\[b \cdot \sigma(n!) = a \cdot m! \]

Observe that
\[\log \sigma(n!) \geq \log(n!) \sim n \log n \]

and now
\[\log(m!) \sim m \log m \ll n \log \log n. \]

Hence,
\[\log a = \log(b/m!) + \log \sigma(n!) \gtrsim n \log n. \]
\[b \cdot \sigma(n!) = a \cdot m! \]

Fix \(0 < \delta < 1/3 \). Let

\[
a' = \prod_{p \leq n^{1-\delta}} \sigma(p^{\nu_p(n!)} \text{ and } a'' = \gcd(a, \sigma(n!)/a').
\]

Clearly, \(a \leq a'a'' \). Notice that

\[
\nu_p(n!) = \sum_{u=1}^{\infty} \left\lfloor \frac{n}{p^u} \right\rfloor < \sum_{u=1}^{\infty} \frac{n}{p^u} = \frac{n}{p-1}
\]

\[
\frac{n}{p} - 1 \leq \nu_p(n!) < \frac{n}{p - 1} \text{ so that}
\]

\[
\log a' \lesssim \sum_{p \leq n^{1-\delta}} \nu_p(n!) \log p \sim (1 - \delta)n \log n.
\]
\[b \cdot \sigma(n!) = a \cdot m! \]

\[n \log n \lesssim \log a \leq \log a' + \log a'' \lesssim (1-\delta)n \log n + \sum_{q \mid a''} \nu_q(a'') \log q. \]

From Lemma 1, \(\sum_{q \mid a''} \nu_q(a'') \log q \) is

\[\ll \sum_{q \mid a''} \frac{n \log \log n}{q \log n} \log q + \sum_{q \mid a''} \left(\frac{n \log \log(q + 1)}{q} \log q + n^{3\delta} \log n \right). \]
So, $\delta n \log n$ is

$$\ll \sum_{q|a'' \atop q \leq n^{c+\epsilon}} \frac{n \log \log n}{q \log n} \log q + \sum_{q|a'' \atop q > n^{c+\epsilon}} \left(\frac{n \log \log(q+1)}{q} \log q + n^{3\delta} \log n\right).$$

For the first sum on the right, we have

$$\sum_{q|a'' \atop q \leq n^{c+\epsilon}} \frac{n \log \log n}{q \log n} \log q \leq \frac{n \log \log n}{\log n} \sum_{q \leq n^{c+\epsilon}} \frac{\log q}{q} \ll n \log \log n.$$
For the second sum, we use that the number of terms is bounded by $\omega(a)$.

$$\sum_{q \mid a'' \atop q > n^{c+\epsilon}} \frac{n \log \log (q + 1)}{q} \log q \leq \omega(a) \cdot \frac{n \log \log (n^{c+\epsilon} + 1)}{n^{c+\epsilon}} \log n^{c+\epsilon}$$

$$\ll n^{c} \cdot \frac{n \log \log n}{n^{c+\epsilon}} \log n \ll n$$

and

$$\sum_{q \mid a'' \atop q > n^{c+\epsilon}} n^{3\delta} \log n \ll \omega(a) n^{3\delta} \log n.$$
\[b \cdot \sigma(n!) = a \cdot m! \]

\[\delta n \log n \ll n \log \log n + n + \omega(a)n^{3\delta} \log n. \]

Consequently,

\[\omega(a)n^{3\delta} \log n \gg \delta n \log n. \]

Taking \(\delta = 4/15 < 1/3 \), the left-hand side is \(\ll n \) and we reach the desired contradiction. Hence,...
the proof is complete...

“uhh... third dimension”
Preliminaries for the function σ

Recall: $\nu_q(N)$ denotes the exponent of q in the prime factorization of N.

$$\sigma(n!) = \prod_{p \leq n} \frac{p^{\nu_p(n!)+1} - 1}{p - 1}$$

Let $\Phi_N(x)$ denote the Nth cyclotomic polynomial.

$$x^N - 1 = \prod_{d|N} \Phi_d(x)$$

GOAL: approximate $\nu_q(\sigma(n!))$

HOW: analyze the highest power of a given prime q that can divide an expression of the form $a^N - 1$
Ideas for Lemma 6

\[m \ll \frac{n \log \log n}{\log n}. \]

The case when \(\omega(\sigma(n!)) < 2n^c \) also gives this. Indeed,

\[\frac{m}{\log m} \ll \pi(m) = \omega(m!) \leq \omega(b \cdot \sigma(n!)) \leq \omega(b) + \omega(\sigma(n!)) \ll n^c \]

implying that \(m \ll n^c \log n \).
Ideas for Lemma 6

Proof. $e(p) = \nu_p(n!), \ N(p) = e(p) + 1,$ and $L = q^2 \log_q n.$

\[
\sigma(n!) = \prod_{p \leq n/L} \sigma(p^{e(p)}) \cdot \prod_{n/L < p \leq n} \sigma(p^{e(p)})
\]

\[
= \prod_{p \leq n/L} \frac{p^{N(p)} - 1}{p - 1} \cdot \prod_{n/L < p \leq n} \frac{p^{N(p)} - 1}{p - 1},
\]

Estimate the contribution of factors of q arising from $\sigma(p^{e(p)})$ separately depending on whether $p \leq n/L$ or $p > n/L.$
Smaller primes p, i.e. $p \leq n/L$

Lemma 2. $a, N \in \mathbb{Z}, N = q^r M, r \geq 0$
$q | \Phi_N(a)$ if and only if $M = \text{ord}_q(a)$

Lemma 3. $\nu_q(a^N - 1) \ll \frac{\log N + \text{ord}_q(a) \log a}{\log q}$
Larger primes p, i.e. $p > n/L$

For each positive integer $\ell < L$, we consider the contribution of q’s from $\sigma(p^{e(p)})$ with $p \in I_\ell = (n/(\ell + 1), n/\ell]$. Fix such an ℓ and a prime $p \in I_\ell$. The definition of L implies $p > \sqrt{n}$. Since $p \in I_\ell$, we obtain

$$N(p) = \lceil n/p \rceil + 1 = \ell + 1.$$

Let $f_\ell(x) = x^\ell + x^{\ell-1} + \cdots + x^2 + x + 1$. Then $\sigma(p^{e(p)}) = f_\ell(p)$. Observe that this polynomial defining $\sigma(p^{e(p)})$ does not change as p varies over the primes in I_ℓ.
\[\nu_q \left(\sigma \left(\prod_{p \in I_{\ell}} p^{e(p)} \right) \right) = \sum_{p \in I_{\ell}} \nu_q(f_{\ell}(p)) = \sum_{j \geq 1} \sum_{p \in I_{\ell}} f_{\ell}(p) \equiv 0 \pmod{q^j} \]

Brun-Titchmarsh inequality that as \(|I_{\ell}|/q^j \to \infty\), we have

\[\pi \left(n/\ell; q^j, a \right) - \pi \left(n/((\ell+1); q^j, a \right) \leq \left(2 + o(1) \right) \frac{|I_{\ell}|}{\phi(q^j) \log \left(|I_{\ell}|/q^j \right)}. \]
\[\rho_{j,\ell} = \rho_{j,\ell}(q) = \left| \{ t \in \mathbb{Z} : 0 \leq t \leq q^j - 1, f_\ell(t) \equiv 0 \pmod{q^j} \} \right|. \]

With some love and tender care:

\[\nu_q \left(\prod_{n/L < p \leq n} \frac{p^{N(p)} - 1}{p - 1} \right) = \sum_{\ell < L} \sum_{p \in I_\ell} \nu_q(f_\ell(p)) \]

\[\ll \sum_{\ell < L} \left(\sum_{1 \leq j \leq J} \frac{2|I_\ell|\rho_{j,\ell}}{\phi(q^j) \log \left(|I_\ell|/q^j \right)} + \sum_{J < j < K_L} \rho_{j,\ell} \left(\frac{|I_\ell|}{q^j} + 1 \right) \right) \]

which gives the result.
The second part of the lemma? It’s similar but less involved.

Take $L = n^\delta$. Partition the interval I_ℓ into congruence classes of length q^j.

\[
\sum_{\ell < L} \sum_{p \in I_\ell} \nu_q(f_\ell(p)) \leq \sum_{\ell < L} \sum_{1 \leq j < K_\ell} \rho_{j,\ell} \left(\frac{|I_\ell|}{q^j} + 1 \right)
\leq \sum_{1 \leq j < K_L} \sum_{\ell < L} \rho_{j,\ell} \frac{|I_\ell|}{q^j} + \sum_{\ell < L} \sum_{1 \leq j < K_L} \rho_{j,\ell}.
\]

Lemma 4. $\rho_{j,\ell} \leq 2 \gcd \left(\phi(q^j), \ell + 1 \right)$ distinct roots modulo q^j.
Lemma 5. \[\sum_{\ell=1}^{\infty} \frac{\gcd(\phi(q^j), \ell)}{\ell^2} \ll \log \log(q + 1) \]

Applying Lemma 4 and Lemma 5 to the first double sum on the right-hand side above and using that \(\rho_{j,\ell} \ll \ell \) to the latter,

\[
\nu_q \left(\prod_{n^{1-\delta} < p \leq n} \frac{p^{N(p)} - 1}{p - 1} \right) = \sum_{\ell < n^\delta} \sum_{p \in I_\ell} \nu_q(f_\ell(p)) \ll \frac{n \log \log(q + 1)}{q} + \frac{n^{3\delta} \log n}{\log q}.
\]

The Main Lemma follows. \(\square \)
Thank you.
Daniel Baczkowski
USC