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1 Introduction

1.1 Cohen-Lenstra Philosophy

About 30 years ago, Cohen and Lenstra [12,13] launched a heuristic study of the
distribution of class groups of number fields. To focus the discussion, we restrict
to a specialized setting. Let p be an odd prime. Among the numerous insights
contained in the work of Cohen and Lenstra, let us single out two and draw a
distinction between them: (1) There is a natural probability distribution on the
category of finite abelian p-groups for which the measure of each G is proportional
to the reciprocal of the size of Aut(G); and (2) the distribution of the p-part of
class groups of imaginary quadratic fields is the same as the Cohen-Lenstra distri-
bution of finite abelian p-groups. The first statement, a purely group-theoretical
one, is quite accessible and Cohen and Lenstra prove many beautiful facts about
such distributions (not just for abelian groups viewed as Z-modules but also more
generally for modules over rings of integers of number fields) in the first part of
[13]. The second, and bolder, insight is much less accessible at present but leads to
striking number-theoretical predictions, only a small number of which have been
proven, but all of which agree with extensive numerical data. Note that (2) quan-
tifies the notion that the (rather elementary) necessary conditions for a group to
occur as the p-part of the class group of an imaginary quadratic field - namely
that it be a finite abelian p-group - should also be sufficient.

In the decades since the publication of [12,13], the application of (1) has been
broadened to a number of other situations. It should be noted, however, that
there are many circumstances where the weighting factor should also involve some
power of the order of G. This includes recent investigations into variation of Tate-
Shafarevich groups, variation of p-class tower groups (p odd) for real quadratic
fields (to be described in a subsequent paper [6] by the authors) and variation in
presentations of p-groups as described in [5]. The case under consideration in the
current paper, however, does not involve these extra factors.

As regards the combination of (1) and (2), one can speak of a “Cohen-Lenstra
strategy,” perhaps, as follows. Suppose we have a sequence G1, G2, . . . of groups
(arising as invariants attached to some kind of arithmetic objects, say). One can
hope to identify a category C of groups in which the sequence lies and to assign
to each G in C a positive real number w(G) called its weight; we would expect
the size of AutC(G) (the set of automorphisms of G in the category C) to appear
in the denominator of w(G). We set wC =

∑
G∈C w(G) for the total weight of C,

assumed to be a finite quantity. Suppose we also define the frequency with which
any object G of C occurs in the sequence (Gn)n≥1 to be the limit

Freq(G) = lim
n→∞

∑n
ν=1 chG(Gν)

n

assuming this exists. Here, chG(H) is the characteristic function of G, taking
the value 1 if H is isomorphic to G (in the category C) and 0 otherwise. The
Cohen-Lenstra philosophy would then say that, assuming the sequence (Gn)n≥1

is sufficiently general and the category C is correctly chosen, for each G ∈ C we
would expect Freq(G) to equal the Cohen-Lenstra measure of G in the category C,
namely w(G)/wC . In such a situation, we can speak of the sequence (Gn) “obeying
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a Cohen-Lenstra distribution for the category C equipped with the weight function
w.”

As just some of the examples of applications of this philosophy, we cite Cohen-
Martinet [14], Wittman [31], and Boston-Ellenberg [7]. In the first two of these,
the class groups are in fact studied as modules over the group ring of the Galois
group. In [7], the groups under study are non-abelian, and in fact the situation is
slightly different because the base field is fixed (to be Q) and the ramifiying set
varies; however the essential Cohen-Lenstra idea appears to apply in that situation
also.

1.2 The Cohen-Lenstra heuristics for p-class groups

For an algebraic number field K, we let AK be the p-Sylow subgroup of its ideal
class group. If we allow K to vary over all imaginary quadratic fields, ordered
according to increasing absolute value of the discriminant dK , the groups AK
fluctuate with no immediately apparent rhyme or reason. When Cohen and Lenstra
investigated their cumulative behavior, however, they found a surprising pattern.
Namely, they asked what can be said about the frequency with which a given
group would occur as AK when the fields K are ordered by the magnitude of their
discriminants. Their heuristic, described above, led them to many predictions, one
of which is the following conjecture.

Conjecture 1.1 (Cohen-Lenstra) Fix a finite abelian group G = Z/pr1 × · · · × Z/prg
of rank g ≥ 1. Among the imaginary quadratic fields K such that AK has rank g,
ordered by discriminant, the probability that AK is isomorphic to G is

1

|Aut(G)|
pg

2
g∏
k=1

(1− p−k)2.

Remark 1.2 We provide more detail on how the above conjecture is related to the
heuristic that groups should be weighted according to the inverse of the size of an
appropriate automorphism group.

For a finite abelian group G, if we define the Cohen-Lenstra weight of G to be
simply w(G) = 1/|Aut(G)|, then it is a theorem of Hall [22] and, in a more general
context, of Cohen-Lenstra, that the total weight wp of all finite abelian p-groups
is given by

wp =
∑
H

w(H) =
∏
n≥1

(1− p−n)−1,

where
∑
H means the sum over the isomorphism classes of finite abelian p-groups.

By [13, p. 56], the probability that an abelian p-group has generator rank g is
given by ∑

{H:d(H)=g} w(H)

wp
= p−g

2 ∏
n≥1

(1− p−n)

g∏
k=1

(1− p−k)−2.

Thus, under the Cohen-Lenstra distribution, the probability that a randomly cho-
sen abelian p-group of generator rank g is isomorphic to G is given by

w(G)∑
{H:d(H)=g} w(H)

=
1

|Aut(G)|
pg

2
g∏
k=1

(1− p−k)2.
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Cohen-Lenstra’s fundamental heuristic assumption (2) then yields Conjecture 1.1.

1.3 Heuristics for the distribution of p-class tower groups

In this article, we continue to assume that p is odd and consider a non-abelian
extension of the number-theoretical objects studied by Cohen and Lenstra, passing
from the p-part of the class group of a number field K to the pro-p fundamental
group of the ring of integers of K, namely the Galois group of its maximal every-
where unramified p-extension. For brevity, henceforth we will refer to these groups
as “p-class tower groups.” The key fact, as pointed out in Koch-Venkov [24], is that
p-class tower groups of imaginary quadratic fields (and certain of their quotients)
must satisfy a “Schur σ” condition; the precise definitions are given below.

To each finite Schur σ-group, or more generally to each maximal p-class c

quotient of any Schur σ-group, we attach a rational number we call its measure;
in the spirit of the Friedman-Washington [17] approach to the Cohen-Lenstra
heuristics, this measure is given by a count of how likely it is for a randomly chosen
set of relations of a certain type to define the given group. Our main heuristic
assumption then, is that for the sequence of p-class tower groups of imaginary
quadratic fields, ordered by discriminant, or more generally for the sequence of
maximal p-class c quotients of these p-class tower groups (where c is any fixed
whole number), the frequency of any given group equals the measure of the group.

To describe our situation in more detail, we specify some notation to be used
throughout the paper. For a pro-p group G, we write

d(G) = dimZ/pZH
1(G,Z/pZ), r(G) = dimZ/pZH

2(G,Z/pZ),

where the action of G on Z/pZ is trivial. These invariants give, respectively, the
generator rank and relation rank of G as a pro-p group. The Frattini subgroup
of G, denoted Φ(G), is defined to be the closure of [G,G]Gp. The groups Gab =
G/[G,G] and G/Φ(G) are, respectively, the maximal abelian quotient and maximal
exponent-p abelian quotient of G.

To describe how we pass to a non-abelian generalization, recall that if K1 is
the p-Hilbert class field of K, defined to be its maximal abelian unramified p-
extension, then there is a canonical isomorphism AK → Gal(K1/K) given by the
Artin reciprocity map. Now, let us consider the field K∞ obtained by taking the
compositum of all finite unramified p-extensions of K, not just the abelian ones.
We put GK = Gal(K∞/K). It is clear that the maximal abelian quotient of GK is
isomorphic to AK and by Burnside d(GK) = d(AK).

The central question we consider in this work is: For a fixed odd prime p,
as K varies over all imaginary quadratic fields of ascending absolute value of
discriminant, what can one say about the variation of the groups GK?

Naturally, this is a more difficult question than the variation of class groups,
even for venturing a guess. Already, the group GK is not always finite. Indeed,
in [24], Koch and Venkov proved that GK is infinite if d(GK) ≥ 3; they did so
by taking into account all the facts they had at their disposal about the group
GK . Namely, GK is a finitely generated pro-p group with finite abelianization and
deficiency 0 (meaning that r(GK) − d(GK) = 0) and admits an automorphism
of order 2 which acts as inversion on its abelianization (complex conjugation is
such an automorphism, for example). Since having zero deficiency is equivalent to
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having trivial Schur multiplier in this context, Koch and Venkov dubbed groups
having this particular set of properties “Schur σ-groups.” In Section 2, we review
some of the work of Koch and Venkov on Schur σ-groups, and develop a method
via counting relations, of measuring how frequently a given group occurs as the
maximal p-class c quotient of Schur σ-groups.

Positing our main heuristic assumption that a finite p-group G arises as a p-
class tower group over an imaginary quadratic field with the same frequency as G
occurs as a randomly chosen group among Schur σ-groups, in Section 3 we arrive
at the following conjecture.

Conjecture 1.3 Suppose G is a finite p-group which is a Schur σ-group of generator
rank g ≥ 1 or, more generally, suppose c is a positive integer and G is the maximal
p-class c quotient of a Schur σ-group. Then, among the imaginary quadratic fields
K such that AK has rank g, ordered by discriminant, the probability that GK (or
in the fixed p-class case, the maximal p-class c quotient of GK) is isomorphic to G
is equal to

1

|Autσ(G)|
pg

2
g∏
k=1

(1− p−k)

g∏
k=1+g−h

(1− p−k),

where h is the difference between the p-multiplicator rank and nuclear rank of G
and Autσ(G) is the centralizer in Aut(G) of an automorphism σ of order 2, acting
as inversion on the abelianization of G. We note that 0 ≤ h ≤ g and that h = g for
Schur σ-groups, in which case the above formula should be compared with that of
Conjecture 1.1.

Remark 1.4 We should point out that the formula above has been proved assuming
an additional group-theoretical conjecture, namely that all the Schur σ-groups and
their maximal p-class c quotients satisfy a kernel invariance property (KIP), see
Definition 2.22. This condition is discussed in more detail in Section 2.5. 1

Remark 1.5 As in the abelian situation, Conjecture 1.3 can also be viewed as arising
from an appropriate choice of weight function for the finite Schur σ-groups. If
we define w′(G) = 1/|Autσ(G)| for a finite Schur σ-group G, then the conjecture
asserts that the density of K for which GK is isomorphic to G is equal to w′(G)/wp.

Remark 1.6 We do not make a direct prediction about how frequently a given
infinite Schur σ-group G occurs as a p-class tower group, but for every c ≥ 1, the
maximal p-class c quotient of G is finite and the conjecture above applies to predict
the density of all imaginary quadratic K (including the ones where GK is infinite)
for which the maximal p-class c quotients of GK and G coincide.

If G is a finite Schur σ-group, then its generator rank g is at most 2. The first
case of Conjecture 1.3 predicts how frequently such a group occurs as a p-class
tower group for imaginary quadratic fields.

1 In recent work by Boston and Wood [10], completed during the submission process for
this paper, it has been shown that this formula can be derived without the KIP assumption.
This will be discussed in more detail in a subsequent paper [6] that deals with the case of real
quadratic fields.
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1.4 Numerical Evidence

As theoretical evidence for their conjecture, Cohen and Lenstra were able to show
that a relatively cheap consequence of their heuristic assumption, namely the pre-
diction that the average value of 3d3(AK) (as K ranges over all imaginary quadratic
fields) is 2, is in fact a highly non-trivial theorem of Davenport and Heilbronn [15].
In more recent work, for example see [3], Bhargava and his students have obtained
deep refinements and extensions of the Davenport-Heilbronn result, in particular
verifying further consequences of the Cohen-Lenstra and Cohen-Martinet conjec-
tures.

As regards numerical evidence, class groups of imaginary quadratic fields can
be computed via an efficient algorithm, and so the class group computations avail-
able to Cohen and Lenstra were quite extensive. In [13], they derived many con-
sequences of their heuristic, every one of which matched and in some cases even
“explained” the observed variation of the p-part of the class group of imaginary
quadratic fields.

In our non-abelian situation, we do not even know an algorithm for determining
whether GK is finite, much less for computing it, so the numerical investigation of
our heuristic is bound to be more tricky. One of the first examples of a computation
of GK in the literature appears in a 1934 article of Scholz and Taussky [29]: for the
field Q(

√
−4027), with p = 3, AK is elementary abelian of rank 2 and the group

GK has size 243 and is isomorphic to the group denoted SmallGroup(243,5) in the
terminology of the computer algebra software package Magma (see [2,4]).

The method of Boston and Leedham-Green [8] can be used for certain K to
produce a short list of candidates for the isomorphism class of GK . In general,
it is difficult to identify the isomorphism type of GK exactly except in special
situations. See section 4 for more details, especially the proof of Theorem 4.3. See
also [9,11] for additional discussion and applications of this method.

In order to test our heuristic hypothesis, we considered what kind of number-
theoretical data (meaning about the groups GK) was within reach, and settled on
the following: we computed the class groups of unramified extensions of K of degree
1 or p. In terms of group theory, this “index ≤ p abelianization data” or “IPAD,”
describes the abelianization of GK as well as those of its index p subgroups. Though
it is impractical at present to attempt the complete computation of GK for all fields
K within a given large discriminant range, it was possible for us to compute the
IPADs for over 460, 000 fields with discriminant in the range −108 < dK < 0 and
to compare the distribution of IPADs to the group-theoretical prediction.

As a summary of the numerical evidence, the second to last column of Table 5.2
in Section 5 lists the observed frequencies of the most common IPADs with p = 3
and g = 2 over all imaginary quadratic fields K with |dK | < 108. The last column
then gives the theoretical predictions based on our heuristic. Given the variability
of the data and the general convergence trend toward the predicted value, we
believe that the data support our conjecture.

1.5 Organization of the paper

As in [13], we have separated the group theory, where we have theorems, from the
number theory, where we mostly make conjectures and collect data. We develop
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some basic facts about Schur σ-groups in Section 2 and introduce various measures
in both the abelian and non-abelian setting. We then relate these measures and
derive formulas for them. In Section 3, we give a precise formulation of our conjec-
ture describing the variation of Galois groups of p-towers of imaginary quadratic
fields. The distribution of IPADs of Schur σ-groups is investigated in Section 4.
This investigation yields a number of results which we prove using a mixture of
theory and computation, thanks to the powerful technique of organizing p-groups
via O’Brien’s p-group generation algorithm [27]. The number-theoretical data we
have collected is summarized in Section 5; see in particular, Tables 1 and 2. The
computations were carried out using the symbolic algebra packages Magma [4] and
PARI/GP [28]. Finally, the appendix contains a proof, by Blackhurst, of a group-
theoretical fact needed in Section 2.

Acknowledgements We acknowledge useful correspondence and conversations with Bettina
Eick, Jordan Ellenberg, John Labute, Daniel Mayer, Cam McLeman, Eamonn O’Brien, and
Melanie Matchett Wood. We are grateful to Jonathan Blackhurst for providing the Appendix.
We would also like to thank Joann Boston for drawing the figure in Section 2.

2 Schur σ-groups

2.1 Preliminaries

Let p be an odd prime.

Definition 2.1 An automorphism of a finitely generated pro-p group G is called
a GI-automorphism (meaning “generator-inverting”) if it has order 2 and acts as
inversion on Gab.

Definition 2.2 A finitely generated pro-p group G is called a Schur σ-group of
rank g if it satisfies the following properties: 1) d(G) = r(G) = g; 2) Gab is finite;
3) It has a GI-automorphism σ.

We now fix g ≥ 1, and let F denote the free pro-p group on g generators x1, . . . , xg.
Let σ be the automorphism of F induced by the assignment σ(xi) = x−1

i for
i = 1, . . . , g. Koch and Venkov [24] showed that, given a GI-automorphism σ on
G, one can choose an epimorphism from F to G so that this automorphism is
induced by the GI-automorphism σ on F . In particular, this means that we can
find generators for G which lie in

X(G, σ) = {s ∈ G | σ(s) = s−1}.

In addition, the relations of a Schur σ-group can always be chosen to lie in

X = X(Φ(F ), σ) = {s ∈ Φ(F ) | σ(s) = s−1}.

Using refinements of the theorem of Golod and Shafarevich, Koch and Venkov
proved that Schur σ-groups of rank g ≥ 3 are always infinite.

In general, we will use the symbol σ to denote both the specific automorphism
of F defined above and a general GI-automorphism on a group G except when
there is the potential for confusion.
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Suppose G is a pro-p group and σ is a GI-automorphism of G. As shown by
Hall (section 1.3 of [21], although sometimes attributed to Burnside), the kernel
from Aut(G) → Aut(G/Φ(G)) is a pro-p group and so by Schur-Zassenhaus (e.g.
Prop. 1.1 of [19]), all lifts of order 2 of the inversion automorphism on G/Φ(G) are
conjugate to each other. It follows that the sets X(G, σ) and Y (G, σ) where

Y (G, σ) = {x ∈ G | σ(x) = x}

are well-defined up to conjugacy and that their orders are independent of the
choice of GI-automorphism σ and hence depend only on G. We will denote the
order of Y (G, σ) by y(G). Also observe that Y (G, σ) = Y (Φ(G), σ). This follows
since p is odd and the automorphism induced by σ on the elementary p-abelian
quotient G/Φ(G) is inversion.

We now consider certain special finite quotients of a finitely generated pro-p
group, namely the maximal quotients of a fixed p-class. To define this, let P0(G) =
G and, for n ≥ 0, let Pn+1(G) denote the (closed) subgroup generated by [G,Pn(G)]
and Pn(G)p. The groups P0(G) ≥ P1(G) ≥ P2(G) ≥ . . . form a descending chain of
characteristic subgroups of G called the lower p-central series. Note that P1(G) is
the Frattini subgroup Φ(G). The p-class c of a finite p-group G is defined to be the
smallest n ≥ 0 for which Pn(G) = {1}. If N is a normal subgroup of G, and G/N

has p-class n, then Pn(G) ≤ N . Thus, if G has p-class c, then for n = 0, . . . , c, the
maximal p-class n quotient of G is G/Pn(G).

Suppose G has p-class c. A pro-p group H satisfying H/Pc(H) ∼= G is called
a descendant of G. If H has p-class c + 1, then H is called a child or immediate

descendant of G. O’Brien [27] produced an algorithm that computes all children
(and so ultimately all descendants of any finite p-class) of a given p-group. It will
be important for us to give much consideration to the maximal p-class n quotients
of Schur σ-groups so we make the following definition.

Definition 2.3 Let G be a finite p-group of p-class c. We say that G is a Schur

σ-ancestor if it is the maximal p-class c quotient of a Schur σ-group. Note that this
terminology has the slightly unorthodox meaning that every finite Schur σ-group
is regarded as a Schur σ-ancestor of itself.

For the O’Brien p-group generation algorithm, two invariants of a p-group G

play important roles, namely its p-multiplicator rank and its nuclear rank. We
now recall their definitions and some of their important properties. Suppose G is
a p-group with d(G) = g and presentation 1 → R → F → G → 1; recall that F
is the free pro-p group on g generators x1, . . . , xg. The isomorphism class of the
objects we are about to define does not depend on the choice of presentation. The
p-covering group G∗ of G is F/R∗ where R∗ is the topological closure of Rp[F,R].
The p-multiplicator of G is defined to be the subgroup R/R∗ of G∗, and the nu-

cleus of G is Pc(G
∗) where c is the p-class of G. The nucleus is a subgroup of

the p-multiplicator. We call the dimension of R/R∗ the p-multiplicator rank ; the
dimension of the subgroup Pc(G

∗) is called the nuclear rank. If a group has nuclear
rank 0, then it has no children and is called terminal.

Remark 2.4 In [27], the quantities introduced above are shown to be well-defined
and independent of the choice of abstract presentation for a finite p-group G rather
than for pro-p presentations. This switch does not cause any problems since if E
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is an abstract free group on the same finite generating set as F then one can show
that E/Pc(E) ∼= F/Pc(F ) for all c ≥ 1. If G has p-class c then this isomorphism
can be used to show that there is a one-to-one correspondence between the normal
subgroups M of E with E/M ∼= G and the (open) normal subgroups N of F
with F/N ∼= G. Furthermore, one can see that for each such corresponding pair
of subgroups, we have isomorphisms E/M∗ ∼= F/N∗ and M/M∗ ∼= N/N∗ induced
by E/Pc+1(E) ∼= F/Pc+1(F ). It follows that the definitions of the nucleus and
p-multiplicator rank are independent of whether one uses an abstract or pro-p
presentation for G.

A Schur σ-ancestor group of p-class c which is terminal has no proper descen-
dants but must be H/Pc(H) for some Schur σ-group H; hence it must be isomorphic
to H and so is a Schur σ-group. Thus, terminal Schur σ-ancestor groups are always
Schur σ-groups. In the other direction, in the appendix, Blackhurst proves that a
non-cyclic p-group with trivial Schur multiplier must be terminal; this is a result
to which several authors have referred, but there appears to be no proof in the
literature. Since Schur σ-groups satisfy r(G) = d(G), they have trivial Schur mul-
tiplier, hence finite non-cyclic Schur σ-groups are terminal. In summary, terminal
Schur σ-ancestor groups are precisely finite non-cyclic Schur σ-groups.

2.2 Measures of p-groups

For each positive integer c, let Fc = F/Pc(F ) with GI-automorphism σ induced by
the GI-automorphism σ on F defined previously. As an analogue of X ⊂ Φ(F ), we
introduce Xc ⊂ Φ(Fc) by defining

Xc = X(Φ(Fc), σ) = {s ∈ Φ(Fc) | σ(s) = s−1}.

Let G be a finite p-group of p-class c with generator and relation ranks both equal
to g. One can see that G is a quotient of Fc′ for all c′ ≥ c. We will say that the tuple
of elements v = (t1, . . . , tg) ∈ Φ(Fc′)

g presents G if Fc′/〈v〉 ∼= G where 〈v〉 denotes
the closed normal subgroup of Fc′ generated by t1, . . . , tg. We let Sc′ = Sc′(G)
denote the set of all such tuples in Φ(Fc′)

g.

When G is a Schur σ-ancestor group we also wish to consider those relations
satisfying the additional restriction that they belong to Xc′ for some fixed c′ ≥ c.
To explain this further, we need two lemmas.

Lemma 2.5 For all d ≥ 1, we have Xd = X ′d where

X ′d = {t−1σ(t) | t ∈ Φ(Fd)}.

Hence, for all g ≥ 1, the map φd : Φ(Fd)
g → Xg

d defined by

(t1, . . . , tg) 7→ (t−1
1 σ(t1), . . . , t−1

g σ(tg))

is surjective. Furthermore, for each w ∈ Xg
d , the fiber φ−1

d (w) is a coset of Y gd in

Φ(Fd)
g where Yd = Y (Fd, σ).
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Proof It is easy to verify that X ′d ⊆ Xd. Now consider the map Xd → X ′d defined by
t 7→ t−1σ(t) = t−2. This map is injective since p is odd and Fd is a finite p-group.
It follows that |Xd| ≤ |X ′d| and hence we must have equality Xd = X ′d.

The statement that the fibers of φd are cosets is straightforward and makes
use of the fact that Yd ⊆ Φ(Fd).

Remark 2.6 Using the fact Xd = X ′d for all d, one can now show that X = X ′

where X ′ = {t−1σ(t) | t ∈ Φ(F )}. Since both sets are closed in F , it suffices to
prove that ψd(X) = ψd(X

′) for all d where ψd : F → Fd is the natural projection.
It is easy to see that X ′ ⊆ X and hence ψd(X

′) ⊆ ψd(X). It follows that

X ′d = ψd(X
′) ⊆ ψd(X) ⊆ Xd = X ′d

and hence the two the middle containments are also equalities.

Lemma 2.7 If H is a Schur σ-ancestor group of p-class c then it can be presented

with a tuple of relations in Xg
c ⊆ Φ(Fc)

g. Conversely, any group H presented by a

tuple of relations in Xg
c is a Schur σ-ancestor group of p-class at most c.

Proof If H is a Schur σ-ancestor group of p-class c then H = Gc for some Schur
σ-group G. If one selects a tuple of relations for G in Xg then it is easy to check
that their images in Xg

c , under the natural projection from F to Fc, present H as
a quotient of Fc.

Now suppose that H = Fc/〈v〉 where v ∈ Xg
c . Then by construction H has

p-class at most c. We wish to show that H = Gc for some Schur σ-group G. Lift
v to a tuple w ∈ Φ(F )g. We can always choose the lift in such a way that the
abelianization of the quotient G = F/〈w〉 is finite. One can see this by taking the
images of the components of w in Fab ∼= Zgp and forming them into the rows of
a g × g matrix over Zp. The group G has finite abelianization if and only if this
matrix has full rank g. Different lifts give rise to translations of the rows of this
matrix by arbitrary row vectors in pcZgp since the image of Pc(F ) in Fab ∼= Zgp is
Pc(F

ab) ∼= pcZgp. The statement then follows since the matrices of full rank are
dense.

At this stage, we’ve constructed a g-generated group G so that it has finite
abelianization and using only g relations. It follows that the relation rank of G is ex-
actly g. However, it is not clear that the group G must inherit a GI-automorphism
from F . This can also be arranged using Lemma 2.5 and Remark 2.6. Replace the
initial tuple v in the argument above with an inverse image v′ ∈ φ−1

c (v) ⊆ Φ(Fc)
g.

One can lift v′ to a tuple w′ so that F/〈w′〉 has finite abelianization and then take
w = φ(w′) where φ : Φ(F )g → Xg is the map defined by t 7→ t−1σ(t) in each compo-
nent. The group G = F/〈w〉 has the same finite abelianization and relation rank g,
but must now also possess a GI-automorphism and hence be a Schur σ-group since
〈w〉 is invariant under σ.

To finish, one observes that Gc ∼= H thus showing that H is a Schur σ-ancestor
group as desired.

Definition 2.8 Let G be a Schur σ-ancestor of p-class c and generator rank g. For
c′ ≥ c, let Tc′ = Tc′(G) denote the set of all tuples in Xg

c′ which present G. We
then define the c′-measure of G by

Measc′(G) =
|Tc′ |
|Xc′ |g

.
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For a finite p-group G which is not a Schur σ-ancestor group, we set Measc′(G) = 0.
We view the c′-measure of a Schur σ-ancestor group G as the probability with
which that group arises as a quotient of Fc′ when one selects a tuple of relations
at random from Xg

c′ . Shortly, we will examine the sequence (Measc′(G))c′≥c.

Example 2.9 As an example, let p = 3 and consider the case where g = 2 and
c′ = c = 2. O’Brien’s algorithm yields seven finite 2-generated 3-groups of 3-class
2, of which three are Schur σ-ancestor groups. In this case, F2 = F/P2(F ) has
order 35 and we calculate that the set X2 is an elementary abelian subgroup of
order 9. Of these three Schur σ-ancestor groups, the one of order 27 - call it G1

- arises when the ordered 2-tuple taken from X2 generates X2. This happens for
48 of the 81 ordered 2-tuples. Thus Meas2(G1) = 16/27. The second group, of
order 81 - call it G2 - arises when the ordered 2-tuple generates one of the four
subgroups of X2 of order 3. Each of these four subgroups is generated by 8 of the
81 ordered 2-tuples in X2 × X2; hence, Meas2(G2) = 32/81. The third group, of
order 243 - call it G3 - is F2 itself and arises when both entries in the 2-tuple are
trivial. Therefore, Meas2(G3) = 1/81. Note that Measc′ of each of these groups is
0 if c′ > 2. An explanation for this will be given shortly.

Remark 2.10 In the above example, Xc′ happened to be a subgroup; in general, X
and Xc′ are not subgroups.

We have Meas1(G) = 1 where G is the elementary abelian p-group of generator
rank g. More generally, for c > 1, one can use Lemma 2.7 to see that Measc(G)
defines a discrete probability measure on the set of isomorphism classes of maximal
p-class c quotients of all Schur σ-groups of generator rank g. This set is finite
and consists of the Schur σ-ancestor groups of p-class exactly c, together with all
Schur σ-groups of p-class less than c. The next theorem shows how these different
probability measures are related.

Theorem 2.11 Let G be a Schur σ-ancestor group of p-class c.

(i) We have

Measc(G) = Measc+1(G) +
∑
Q

Measc+1(Q)

where the summation is over all immediate descendants Q of G which are Schur

σ-ancestor groups.

(ii) Measc′(G) = Measc+1(G) for all c′ ≥ c+ 1.

Proof It follows from Lemma 2.5 that fibers over individual elements for the maps
φc : Φ(Fc)

g → Xg
c and φc+1 : Φ(Fc+1)g → Xg

c+1 are uniform in size. The same
statement holds for the natural projection ψ : Φ(Fc+1)g → Φ(Fc)

g. We have an
induced map Ψ : Xg

c+1 → Xg
c obtained by restricting ψ to the subset Xg

c+1 ⊆
Φ(Fc+1)g. It is also surjective and must have fibers that are uniform in size since
Ψ ◦ φc+1 = φc ◦ ψ. Thus, we have

Measc(G) =
|Tc|
|Xc|g

=
|Ψ−1(Tc)|
|Ψ−1(Xg

c )|
=
|Ψ−1(Tc)|
|Xc+1|g

.

The statement in part (i) will follow once we show Ψ−1(Tc) = Ψ−1(Tc(G)) =
Tc+1(G) ∪

⋃
Q(Tc+1(Q)) where Q runs through the immediate descendants of G.
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Note that the union is disjoint by definition of Tc+1, and Tc+1(Q) = ∅ if Q is not
a Schur σ-ancestor group by Lemma 2.7.

We now check containment in both directions. If v ∈ Tc+1(G) ∪
⋃
Q(Tc+1(Q))

and 〈v〉 is the normal subgroup of Fc+1 generated by v, then H = Fc+1/〈v〉 is
isomorphic to G or an immediate descendant Q. In either case, H/Pc(H) ∼= G. It
follows that Ψ(v) ∈ Tc(G) since the normal subgroup 〈Ψ(v)〉 in Fc is equal to the
image of the normal subgroup 〈v〉 under the natural epimorphism Fc+1 → Fc, and
thus

Fc/〈Ψ(v)〉 ∼= Fc+1/〈v〉Pc(Fc+1) ∼= H/Pc(H) ∼= G.

For the other direction, suppose that one has a tuple v ∈ Xg
c+1 with Ψ(v) ∈

Tc(G). Then H = Fc+1/〈v〉 is a Schur σ-ancestor group by Lemma 2.7 with p-class
at most c+1. We also have H/Pc(H) ∼= G which follows again since 〈Ψ(v)〉 is equal
to the image of 〈v〉 under the natural epimorphism Fc+1 → Fc. We deduce that
H is either G or an immediate descendant and so by definition v ∈ Tc+1(G) or
v ∈ Tc+1(Q) for some immediate descendant Q.

The proof of part (ii) reduces to verifying that Ψ−1(Tc+1(G)) = Tc′(G) where
Ψ : Xg

c′ → Xg
c+1 is now the restriction of the natural epimorphism ψ : Φ(Fc′)

g →
Φ(Fc+1)g. Verifying the containment Tc′(G) ⊆ Ψ−1(Tc+1(G)) is straightforward.
For the reverse containment, we must make use of the assumption that G has p-
class c. Suppose that v ∈ Xg

c′ and Ψ(v) ∈ Tc+1(G). We wish to show that v ∈ Tc′(G).
Let w ∈ Xg ⊆ F g be a lift of v under the natural epimorphism F g → F gc′ such that

Ĝ = F/〈w〉 is a Schur σ-group (see the proof of Lemma 2.7). Let Ĝd denote the
quotient Ĝ/Pd(Ĝ). Then we have Ĝc+1

∼= G ∼= Ĝc since Ψ(v) ∈ Tc+1(G) and G has
p-class c. Equivalently, Pc+1(Ĝ) = Pc(Ĝ). An inductive argument now shows that
Pd(Ĝ) ∼= Pc(Ĝ) and hence Ĝd ∼= G for all d ≥ c. In particular, Fc′/〈v〉 ∼= Ĝc′ ∼= G

which shows that v ∈ Tc′(G) as desired.

Definition 2.12 Let G be a Schur σ-ancestor group of p-class c. We define the
measure of G (denoted Meas(G)) to be the common value of Measc′(G) for c′ ≥ c+1.
For a finite p-group G which is not a Schur σ-ancestor group, we set Meas(G) = 0.

Theorem 2.13 Let G be a Schur σ-ancestor group of p-class c.

1. If G is a non-cyclic Schur σ-group, then Meas(G) = Measc(G) > 0.

2. If G is not a Schur σ-group, then Meas(G) = Measc+1(G) = 0 and Measc(G) is

the sum of the c+ 1-measures of its immediate descendants.

Proof If G is a non-cyclic Schur σ-group of p-class c then, as discussed in Sec-
tion 2.1, it has no descendants and so by part (i) of Theorem 2.11 we see that
Measc(G) = Measc+1(G). It follows that Meas(G) = Measc(G) and Measc(G) > 0
since Tc(G) 6= ∅.

On the other hand, if Meas(G) = Measc+1(G) > 0 then Tc+1(G) 6= ∅. Let
v ∈ Tc+1(G) and consider a lift w ∈ Xg such that Ĝ = F/〈w〉 is a Schur σ-group.
If G has p-class c then the arguments in the proof of part (ii) of Theorem 2.11
imply that G ∼= Ĝc ∼= lim←− Ĝc′

∼= Ĝ. Hence G itself is a Schur σ-group of p-class c.
Thus if G is a Schur σ-ancestor of p-class c which is not a Schur σ-group then one
must have Measc+1(G) = 0 and so Measc(G) is the sum of the c + 1-measures of
its immediate descendants by part (i) of Theorem 2.11,
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2.3 Measures of abelian p-groups

We are now going to define analogous measures on the class of finite abelian p-
groups and relate these to the measures introduced above. This can be used to
justify the assertion that our conjectures in the non-abelian setting generalize the
Cohen-Lenstra heuristics for p-class groups. See Remark 3.3.

In what follows, the role of F and Fc will be played by the abelianizations Fab

and Fabc . Note that (Fc)
ab ∼= (Fab)c. Every abelian pro-p group G comes equipped

with a unique σ-automorphism, namely the inversion mapping x 7→ x−1. We define
sets Xab and Xab

c in an analogous way to X and Xc but things are now simpler
and it is easy to verify that Xab = Φ(Fab) and Xab

c = Φ(Fabc ).
Let G be a finite abelian p-group of p-class c with generator rank g and let

c′ ≥ c. We will say that the tuple of elements v = (t1, . . . , tg) ∈ Φ(Fabc′ )g presents

G if Fabc′ /〈v〉 ∼= G where 〈v〉 denotes the (normal) subgroup of Fabc′ generated by
t1, . . . , tg. We let Sabc′ = Sabc′ (G) denote the set of all such tuples in Φ(Fabc′ )g. In the
non-abelian setting, we introduced a second set of tuples Tc′ ⊆ Sc′ . We can do the
same in the abelian setting, but the situation now is simpler and we have Tabc′ =
Sabc′ since Xab

c′ = Φ(Fabc′ ).

Definition 2.14 Let G be an abelian p-group of p-class c and generator rank g.
For c′ ≥ c, we define the abelian c′-measure of G by

Measabc′ (G) =
|Tabc′ |
|Xab
c′ |g

(
=

|Sabc′ |
|Φ(Fabc′ )|g

)
.

We view the abelian c′-measure of a finite p-group G as the probability with which
that group arises as a quotient of Fabc′ when one selects a tuple of relations at
random from (Xab

c′ )g = Φ(Fabc′ )g.

Theorem 2.15 Let G be an abelian p-group of p-class c.

(i) We have

Measabc (G) = Measabc+1(G) +
∑
Q

Measabc+1(Q)

where the summation is over all immediate abelian descendants Q of G.

(ii) Measabc′ (G) = Measabc+1(G) for all c′ ≥ c+ 1.

Proof The proof is carried out in exactly the same fashion as the proof of Theo-
rem 2.11. We omit the details.

Definition 2.16 Let G be an abelian p-group of p-class c. We define the abelian

measure of G (denoted Measab(G)) to be the common value of Measabc′ (G) for c′ ≥
c+ 1.

Remark 2.17 It follows from part (i) of Theorem 2.15 that if G is an abelian p-group
of p-class c then

Measab(G) = Measabc (G)−
∑
Q

Measabc+1(Q)

where the summation is over all abelian groups Q of p-class c+1 with Q/Qp
c ∼= G;

here Qp
c

= Pc(Q) is the subgroup of Q generated by all pc-th powers.
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The following theorem and its corollary provide the link between Measabc and
Measc.

Theorem 2.18 Let G be an abelian p-group of p-class c. For all c′ ≥ c we have

Measabc′ (G) =
∑
Q

Measc′(Q)

where the summation is over all Schur σ-ancestor groups Q with p-class at most c′ and

Qab ∼= G.

Proof It follows from Lemma 2.5 that the fibers of the map φc′ : Φ(Fc′)
g → Xg

c′

are uniform in size. The same statement holds for the analogous map on the
abelian side, namely φabc′ : Φ(Fabc′ )g → (Xab

c′ )g = Φ(Fabc′ )g given by (t1, . . . , tg) 7→
(t−1

1 σ(t1), . . . , t−1
g σ(tg)) = (t−2

1 , . . . , t−2
g ). Indeed, the latter map is a bijection since

p is odd. We also have a projection map ψ : Φ(Fc′)
g → Φ(Fabc′ )g and its restriction

Ψ : Xg
c′ → (Xab

c′ )g = Φ(Fabc′ )g. Since the projection ψ has uniform fibers and

Ψ ◦ φc′ = φabc′ ◦ ψ, we see that Ψ is also onto and has uniform fibers. Thus

Measabc′ (G) =
|Tabc′ |
|Xab
c′ |g

=
|Ψ−1(Tabc′ )|
|Ψ−1((Xab

c′ )g)|
=
|Ψ−1(Tabc′ )|
|Xc′ |g

.

If v ∈ Ψ−1(Tabc′ ) = Ψ−1(Tabc′ (G)) then by definition Fabc′ /〈Ψ(v)〉 ∼= G and so
(Fc′/〈v〉)ab ∼= Fabc′ /〈Ψ(v)〉 ∼= G. This means v ∈ Tc′(Q) where Q = Fc′/〈v〉 is a
Schur σ-ancestor group by Lemma 2.7 and we have Qab ∼= G. Conversely, the
same isomorphisms show that if v ∈ Tc′(Q) for a Schur σ-ancestor group Q with
Qab ∼= G, then v ∈ Ψ−1(Tabc′ (G)). Thus we have Ψ−1(Tabc′ (G)) =

⋃
Q Tc′(Q) where

the union is taken over all the Schur σ-ancestor groups Q with p-class at most
c′ and Qab ∼= G. The union is disjoint so the statement about the measures now
follows.

If Qab ∼= G and G has p-class c then Q must have p-class at least c. We thus
have the following corollary.

Corollary 2.19 Let G be an abelian p-group of p-class c. Then

Measabc (G) =
∑
Q

Measc(Q)

where the summation is over all Schur σ-ancestor groups Q with p-class exactly c that

satisfy Qab ∼= G.

2.4 Formulas for Measabc and Measc

We will now derive formulas for the various measures introduced so far starting
with the abelian case. The derivation in this case lays the groundwork for the
proof of Theorem 2.25 which is more complicated but has a similar structure and
begins with the same counting argument.
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Theorem 2.20 Let G be an abelian p-group of p-class c and generator rank g. We

have

Measabc (G) =
1

|Aut(G)|
pg

2
g∏
k=1

(1− p−k)

g∏
k=1+g−u

(1− p−k)

where u counts the number of cyclic groups of order strictly less than pc in the direct

product decomposition of G.

For c′ > c, we have

Measabc′ (G) = Measab(G) =
1

|Aut(G)|
pg

2
g∏
k=1

(1− p−k)2.

Proof To compute Measabc (G) we need to count tuples of relations in Φ(Fabc )g which
present G. We will do this in two stages by following the same strategy as in [5].
First, we will count the number of normal subgroups R in Fabc with Fabc /R ∼= G by
counting certain collections of epimorphisms. Then we will count the number of
generating tuples that generate each such subgroup as a normal subgroup although
the normality condition imposes no restriction here since Fabc is abelian.

Let Epi(F,G) be the set of epimorphisms from F to G where F is the free pro-p
group on g generators. Such epimorphisms are in one-to-one correspondence with
ordered g-tuples of elements in G that generate G. By Burnside’s basis theorem,
a tuple of elements generates G if and only if it generates G/Φ(G). It follows that

|Epi(F,G)| = |Φ(G)|g (pg − pg−1)(pg − pg−2) . . . (pg − 1) = |Φ(G)|g
g∏
k=1

(pg − pg−k)

since G/Φ(G) is an Fp-space of dimension g.

Two epimorphisms have the same kernel if and only if they differ by an au-
tomorphism of G, so dividing by |Aut(G)| gives the number of (closed) normal
subgroups R of F with quotient isomorphic to G. Since G is abelian and has p-
class c we have Pc(F )[F, F ] ⊆ R for each such subgroup R and there is a one-to-one
correspondence between these subgroups of F and the subgroups R of Fabc such
that Fabc /R ∼= G. Thus the number of such subgroups R is

|Epi(F,G)|
|Aut(G)|

=
|Φ(G)|g

|Aut(G)|

g∏
k=1

(pg − pg−k).

Now we need to count how many g-tuples of elements generate each R as a
(normal) subgroup of Fabc . A g-tuple of elements generates R as a subgroup of
Fabc if and only if their images generate the Fp-space V = R/Φ(R). Since Fabc ∼=
Fab/(Fab)p

c

is a product of g copies of Z/pcZ, the dimension of V is equal to the
number of cyclic factors in the decomposition of the abelian group G which are
strictly smaller than Z/pcZ. This is the quantity u in the statement of the theorem.
There are

∏u
k=1(pg − pu−k) g-tuples of elements in V which span this space and

hence

|Φ(R)|g
u∏
k=1

(pg − pu−k)
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g-tuples that generate each subgroup R. Note that |Φ(R)| = |Fabc |/[Fabc : Φ(R)] =
|Fabc |/(|G|pu) so this quantity is independent of the particular subgroup R being
considered.

Combining the statements above, we have

Measabc (G) =
|Sabc (G)|
|Φ(Fabc )|g

=
1

|Φ(Fabc )|g
|Φ(G)|g

|Aut(G)|

g∏
k=1

(pg − pg−k)|Φ(R)|g
u∏
k=1

(pg − pu−k)

=
1

|Φ(Fabc )|g
(|Φ(Fabc )|/|R|)g

|Aut(G)|

g∏
k=1

(pg − pg−k)
|R|g

pgu

u∏
k=1

(pg − pu−k)

=
1

|Aut(G)|
1

pgu

g∏
k=1

(pg − pg−k)
u∏
k=1

(pg − pu−k)

=
1

|Aut(G)|
pg

2
g∏
k=1

(1− p−k)

g∏
k=1+g−u

(1− p−k)

The second statement about Measabc′ (G) for c′ > c is verified in exactly the
same way. The only difference occurs in the second step. One sees that the space
V = R/Φ(R) has dimension g since G has p-class c which means that all g of its

cyclic components are strictly smaller that Z/pc
′
Z. Thus the formula one obtains

is the one above with u = g.

Remark 2.21 If we define ηj(p) =
∏j
k=1(1 − p−k) as in [13], then the formulas in

Theorem 2.20 can be written

Measabc (G) =
1

|Aut(G)|
pg

2
(
ηg(p)

2

ηg−u(p)

)
Measab(G) =

1

|Aut(G)|
pg

2

ηg(p)
2.

To derive similar formulas for the measures in the non-abelian context, we need
an additional technical assumption on the groups involved.2 Recall that F is the
free pro-p group of generator rank g. Let G be a Schur σ-ancestor group of p-class
c with generator rank g. Given w ∈ Tc(G), the normal subgroup 〈w〉 is the kernel
of an epimorphism from Fc to G and satisfies σ(〈w〉) = 〈w〉. In the lemma and
theorems which follow, we will need to make the much stronger assumption that
the kernel of every epimorphism from Fc to G is invariant under σ. Or, equivalently,
that the kernel of every epimorphism from F to G is invariant under σ.

Definition 2.22 If G is a finite p-group with the same generator rank as the free
group F and σ(kerψ) = kerψ for every epimorphism ψ : F → G then we will say
that G satisfies the kernel invariance property (KIP).

Some additional remarks about this property and its range of applicability will be
made later in Section 2.5.

Lemma 2.23 Let G be a Schur σ-ancestor group of p-class c satisfying KIP. Let c′ ≥ c
and define y(G), Sc′ = Sc′(G), Tc′ = Tc′(G), φc′ and Yc′ = Y (Fc′ , σ) as discussed in

Sections 2.1 and 2.2 prior to Lemma 2.7. The following statements hold.

2 See the earlier footnote to Remark 1.4.
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(i) If v ∈ Sc′ then 〈φc′(v)〉 = 〈v〉 and φc′(v) ∈ Tc′ .
(ii) If w ∈ Tc′ then there exists v ∈ Sc′ such that φc′(v) = w.

(iii) Let v ∈ Sc′ and R = 〈v〉. Then u ∈ Sc′ and φc′(u) = φc′(v) if and only if

uv−1 ∈ (Yc′ ∩R)g.

(iv) [Yc′ : Yc′ ∩R] = y(G) where R is the kernel of any epimorphism from Fc′ to G.

Proof We make two preliminary observations. First, since G has p-class c and
satisfies KIP, the kernel of every epimorphism from Fc′ to G where c′ ≥ c must
be invariant under σ. This follows since each such epimorphism is induced by an
epimorphism from F to G for which the kernel is invariant by the KIP assumption.
This form of KIP is used below and in some of the later proofs in this section.

Second, if we restrict φc′ to Xg
c′ then we obtain a map φc′ : Xg

c′ → Xg
c′ which is

the powering map t 7→ t−2 in each component. Since p is odd, there exists n ≥ 1
such that (−2)n ≡ 1 modulo the exponent of the group Fc′ . The iterate φnc′ is then
the identity on Xg

c′ .
For part (i), suppose v ∈ Sc′ . Then the normal subgroup R = 〈v〉 is the kernel

of an epimorphism Fc′ → G and so is invariant under σ by the KIP assumption.
It follows that t−1

i σ(ti) ∈ 〈v〉 for all i and so 〈v〉 ⊇ 〈φc′(v)〉. Further iterates of the
tuple continue to lie in Xg

c′ and so generate normal subgroups invariant under σ.
By induction, we then have

R = 〈v〉 ⊇ 〈φc′(v)〉 . . . ⊇ 〈φnc′(v)〉 ⊇ . . .

Since φc′(φ
n
c′(v)) = φnc′(φc′(v)) = φc′(v), we see that u = φnc′(v) and v both lie in

the same fiber of the map φc′ . This fiber is a (right) coset of Y gc′ by Lemma 2.5. The
components of u and v also lie in R, so uv−1 ∈ (Yc′ ∩R)g. The argument in the first
part of the proof of (iii) below now shows that 〈u〉 = 〈v〉 and hence that the chain
of containments above are all equalities. In particular, we have 〈φc′(v)〉 = 〈v〉 = R

and so φc′(v) ∈ Tc′ .
For part (ii), let w ∈ Tc′ ⊆ Xg

c′ . We then have w = φnc′(w) = φc′(v) where
v = φn−1

c′ (w). Note that v ∈ Tc′ ⊆ Sc′ by repeated application of part (i).
For part (iii), let v = (t1, . . . , tg) ∈ Sc′ and R = 〈v〉. If uv−1 ∈ (Yc′∩R)g then u =

(y1t1, . . . , ygtg) for some (y1, . . . , yg) ∈ (Yc′ ∩ R)g and it follows immediately that
φc′(u) = φc′(v). The assumption that t1, ..., tg generate R as a normal subgroup
of Fc′ is equivalent to their images spanning the Fp-space R/R

∗ ∼= R/Pc′(F )R∗.
We will now show that this also holds for y1t1, . . . , ygtg from which it follows that
〈u〉 = 〈v〉 = R and hence u ∈ Sc′ .

The key observation is that the induced action of σ on R/R
∗

is entirely by
inversion. This follows by first using [20] p.100, Prop. 4, to identify the vector
space with H2(G,Fp). Next, consider the homology long exact sequence associated
to the short exact sequence

0→ Z→ Z→ Z/p→ 0.

This is

. . .→ H2(G,Z)→ H2(G,Z)→ H2(G,Z/p)→ H1(G,Z)→ H1(G,Z)→ . . .

which yields the exact sequence

0→ H2(G,Z)/pH2(G,Z)→ H2(G,Z/p)→ H1(G,Z)[p]→ 0.
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These maps are σ-equivariant and the 3rd and 4th terms have the same dimension
over Fp, implying that H2(G,Z/p) is σ-isomorphic to H1(G,Z)[p]. Since G is finite,
this in turn is σ-isomorphic to H1(G,Z/p), which by [20], p.99, Prop. 3, is σ-
isomorphic to G/Φ(G). By assumption, σ acts on the latter by inversion. Thus if
y1, . . . , yg lie in Yc′ ∩ R then their images in R/R

∗
must be trivial (since they are

both fixed and inverted), and so the images of yiti for i = 1, . . . , g will also span
this space. It follows that 〈u〉 = 〈v〉 = R and so u ∈ Sc′ .

Conversely, suppose u ∈ Sc′ and φc′(u) = φc′(v). Then we can apply part (i)
to see that 〈u〉 = 〈φc′(u)〉 = 〈φc′(v)〉 = 〈v〉 = R. By Lemma 2.5, we can write
u = (y1t1, . . . , ygtg) with yi ∈ Yc′ for all i. Combining the previous two statements,
we deduce that yi ∈ Yc′ ∩R for all i and so uv−1 ∈ (Yc′ ∩R)g.

Finally, part (iv) follows since ifG ∼= Fc′/R then y(G) = y(Fc′/R) = |Y (Fc′/R, σ)|
where σ also denotes the automorphism on the quotient induced by σ : Fc′ → Fc′ .
Now observe that Y (Fc′/R, σ) = Yc′R/R ∼= Yc′/Yc′ ∩ R. The first equality can be
verified by checking containment in both directions. First, since Yc′ = Y (Fc′ , σ)
and σ(R) = R, it is easy to see that Yc′R/R ⊆ Y (Fc′/R, σ). For the reverse con-
tainment, suppose that g = xR ∈ Y (Fc′/R, σ), then σ(x) = xr for some r ∈ R.
Since x = σ2(x) = xrσ(r) one sees that σ(r) = r−1. Using the fact that the map
s 7→ s2 is a bijection from R to R, we can select s ∈ R such that s2 = r. One can
then verify that x′ = xs ∈ Yc′ and hence g = xR = x′R ∈ Yc′R/R.

Before stating the next theorem we need to define one additional quantity.

Definition 2.24 Let G be a finite p-group. Define h(G) to be p-multiplicator rank
of G minus the nuclear rank of G. Equivalently, h(G) is the dimension of the
Fp-space R/Pc(F )R∗ where G ∼= F/R and has p-class c.

We note that for any finite p-group G we have h(G) ≥ 0. It is a fact that r(Q) ≥
h(G) for any descendant Q of G (Prop. 2 of [9]). In particular, if G is g-generated
and h(G) > g then G and its descendants cannot be Schur σ-ancestor groups.

Theorem 2.25 Let G be a Schur σ-ancestor group of p-class c and rank g satisfying

KIP. Let h = h(G) and r = r(G). Then

Measc(G) =
y(G)g

|Aut(G)|
pg

2
g∏
k=1

(1− p−k)

g∏
k=1+g−h

(1− p−k)

and for c′ > c

Measc′(G) =
y(G)g

|Aut(G)|
pg

2
g∏
k=1

(1− p−k)

g∏
k=1+g−r

(1− p−k)

Proof To compute Measc(G), we will first find the proportion of g-tuples of relators
in Φ(Fc) that present G. We will then modify this to obtain Measc(G). A similar
argument yields the second formula.

For the first step, we use similar arguments as in Theorem 2.20. If G = F/R

has p-class c then Pc(F ) ⊆ R and we have a one-to-one correspondence between
the normal subgroups R of F such that F/R ∼= G and the normal subgroups R of
Fc such that Fc/R ∼= G. The number of such normal subgroups is

|Epi(F,G)|
|Aut(G)|

=
|Φ(G)|g

|Aut(G)|

g∏
k=1

(pg − pg−k).
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A g-tuple of elements generates R = R/Pc(F ) as a normal subgroup of Fc if
and only if its image generates the Fp-space V = R/Pc(F )R∗. This has dimension
h by definition. If we let R

∗
= Pc(F )R∗/Pc(F ) ⊆ Fc then the number of g-tuples

that generate R is

|R∗|g
h∏
k=1

(pg − ph−k).

A similar calculation to the one in Theorem 2.20 now shows that

|Sc(G)|
|Φ(Fc)|g

=
1

|Φ(Fc)|g
|Φ(G)|g

|Aut(G)|

g∏
k=1

(pg − pg−k)|R∗|g
h∏
k=1

(pg − ph−k)

=
1

|Aut(G)|
pg

2
g∏
k=1

(1− p−k)

g∏
k=1+g−h

(1− p−k)

where we’ve made use of the fact that |R∗| = |R|/ph and |Φ(G)| = |Φ(Fc)|/|R|.
We now relate this quantity to Measc(G). Using parts (i), (ii) and (iii) of

Lemma 2.23, we have

|Sc(G)| = |Sc| = |Tc| · |Yc ∩R|g.

It follows that

Measc(G) =
|Tc|
|Xc|g

=
|Sc|

|Xc|g|Yc ∩R|g
=

1

|Yc ∩R|g
|Φ(Fc)|g

|Xc|g
|Sc|

|Φ(Fc)|g

=
|Yc|g

|Yc ∩R|g
|Sc|

|Φ(Fc)|g
= y(G)g

|Sc|
|Φ(Fc)|g

where we have also made use of Lemma 2.5 and part (iv) of Lemma 2.23 in the
last two steps. Substituting our earlier expression for |Sc|/|Φ(Fc)|g, we arrive at
the formula for Measc(G) in the statement of the theorem.

This completes the verification of the formula for Measc(G). The verification
of the formula for Measc′(G) where c′ > c is almost identical. The only part
that changes is the second step where one now counts the number of g-tuples
generating a normal subgroup R = R/Pc′(F ) with Fc′/R ∼= G. Since G has p-class
c we have Pc(F ) ⊆ R and so Pc′(F ) ⊆ R∗ for all c′ > c. It follows that in this
case V = R/Pc′(F )R∗ = R/R∗. This is the p-multiplicator whose dimension as
an Fp-space is equal to the relation rank r. Thus the formula for the number of
g-tuples can be obtained by taking the formula in the first argument and replacing
the quantity h with r.

Corollary 2.26 Let G be a non-cyclic Schur σ-group of p-class c and rank g satisfying

KIP. Then

Meas(G) = Measc(G) =
y(G)g

|Aut(G)|
pg

2
g∏
k=1

(1− p−k)2.

Example 2.27 Let’s compute Meas2(G) for the Schur σ-ancestor groups of 3-class
2 in Example 2.9 using Theorem 2.25. The fact that these three groups satisfy
KIP can be verified computationally or by using Theorem 2.32 since the three
groups are all immediate descendants of F1 = F/P1(F ). We have p = 3, g = 2
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and c = 2 so the formula reduces to Meas2(Gi) = 48ky(Gi)
2/|Aut(Gi)|, where

k = 1
32h

∏h
k=1(32 − 3h−k) is the proportion of ordered pairs of vectors that span

an h-dimensional vector space over F3 and h = h(Gi). For G1, G2, G3 we have
y(Gi) = 3 for all i, h(Gi) = 2, 1, 0 respectively, and |Aut(Gi)| = 432, 972, 34992
respectively. Thus, Meas2(G1) = 48 × 16/27 × 32 × 1/432 = 16/27; Meas2(G2) =
48× 8/9× 32 × 1/972 = 32/81; Meas2(G3) = 48× 1× 32 × 1/34992 = 1/81. These
values agree with those obtained earlier by direct enumeration of the tuples of
relations.

Definition 2.28 Suppose G is a finite p-group equipped with a GI-automorphism τ .
We denote by Autτ (G) the set of all automorphisms of G which commute with τ .

Theorem 2.29 Suppose G is a finite p-group equipped with a GI-automorphism τ and

which satisfies KIP. Then |Autτ (G)| = |Aut(G)|/y(G)g.

Proof Let Σ(G) be the set of all GI-automorphisms of G. The automorphism group
Aut(G) acts on Σ(G) by conjugation and this action is transitive by Hall’s the-
orem and Schur-Zassenhaus. The stabilizer of τ ∈ Σ(G) is Autτ (G) so we have
|Aut(G)| = |Autτ (G)||Σ(G)|. We will now show that |Σ(G)| = y(G)g which implies
the statement of the theorem.

Consider the set E(F,G) of epimorphisms from F to G. We are going to count
the number of elements in E(F,G) in two different ways. Let φ ∈ E(F,G). The
kernel of φ is invariant under σ since G satisfies KIP. It follows that σ induces a
GI-automorphism on G, which we denote by α, satisfying

α(φ(x)) = φ(σ(x)) (∗)

for all x in F . We thus have a map E(F,G) → Σ(G) defined by φ 7→ α. This
map is surjective due to work of Koch and Venkov discussed in Section 2.1. To
understand the fibers of this map, we fix α and ask which φ satisfy (∗). First note
that φ is determined by (φ(x1), ..., φ(xg)) ∈ Gg and that any ordered g-tuple is
possible so long as they generate G and satisfy (∗). The property (∗) says that
α(φ(xi)) = φ(x−1

i ) = φ(xi)
−1, in other words, that φ(xi) ∈ X(G,α) for all i. Thus

every φ yields an element of X(G,α)g generating G and vice versa every element
of X(G,α)g generating G specifies a legitimate φ. The size of this set of tuples is
independent of α, so we see that the fibers are uniform in size and hence |E(F,G)|
is the product of |Σ(G)| and the number of elements of X(G,α)g generating G.

On the other hand, if we fix α ∈ Σ(G) then it is easily seen that G =
Y (G,α)X(G,α) and that X(G,α)∩Y (G,α) = {1}. Associate to φ ∈ E(F,G), the tu-
ple (φ(x1), ..., φ(xg)) ∈ Gg. Write this uniquely as (a1b1, ..., agbg) where ai ∈ Y (G,α)
and bi ∈ X(G,α). Since φ is surjective if and only if b1, ..., bg generate G (as
Y (G,α) ⊆ Φ(G)), we see that |E(F,G)| is |Y (G,α)|g times the number of elements
of X(G,α)g generating G.

Equating the two expressions for |E(F,G)|, we deduce that |Σ(G)| = |Y (G,α)|g =
y(G)g as desired.

Combining Theorem 2.25 and Theorem 2.29, and using the function ηj(p) in
Remark 2.21, we obtain the following Corollary, which is the basis for Conjecture
1.3 stated in Section 1.
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Corollary 2.30 Let G be a Schur σ-ancestor group of p-class c and rank g satisfying

KIP. Let h = h(G) and r = r(G). Then

Measc(G) =
1

|Autσ(G)|
pg

2
(
ηg(p)

2

ηg−h(p)

)
and for c′ > c

Measc′(G) =
1

|Autσ(G)|
pg

2
(
ηg(p)

2

ηg−r(p)

)
.

Remark 2.31 We have largely set aside the case of cyclic p-groups in this section
because, being abelian, they are already covered by the original Cohen-Lenstra
heuristics. Hence, one can compute Measab(G) as a predictor for the value of the
frequency Freq(G). However, one can also view a cyclic p-group G as a Schur σ-
group. It easy to see that such a group satisfies KIP and we can therefore compute
Meas(G) via our formula; when we do so, we obtain the same value for Freq(G)
since the GI-automorphism σ is just inversion and so Autσ(G) = Aut(G).

For use later and to illustrate the ideas so far, we display a tree in Figure 2.1
showing the first few levels of Schur σ-ancestor groups G which are descendants
of G1. Each vertex corresponds to a group G and is labeled with the quantity
Measc(G) where c is the p-class of G. Certain relationships exist between the
labels as explained in Theorem 2.13. Vertices with no descendants (circled in the
figure) correspond to Schur σ-groups and in this case the label is also the value of
Meas(G). For vertices that are not terminal, the label is always equal to the sum
of the labels of the immediate descendants. These labels were calculated using the
formulas from this section and assuming KIP. We confirmed KIP computationally
for each group in the figure with p-class at most 6. Unfortunately it would appear
to be prohibitively time-consuming to test KIP for all of the groups at the next
level.

Identifying whether or not a given p-group is a Schur σ-ancestor group from the
definition can be computationally difficult as the order and p-class of the group
increases. The p-groups of generator rank g and fixed p-class can be generated
using O’Brien’s p-group generation algorithm. If one is only interested in those de-
scendants which are Schur σ-ancestor groups, then one can immediately eliminate
descendants G which do not possess a GI-automorphism or for which h(G) > g.
Occasionally, one encounters groups which pass both of these tests and which are
not Schur σ-ancestor groups. These groups are hard to distinguish from Schur
σ-ancestor groups and so we refer to them as pseudo-Schur σ-ancestor groups. For
example, the computations in Example 2.9 show that G1, G2 and G3 are the only
2-generated 3-groups which are Schur σ-ancestor groups of 3-class 2. However, the
groups Z/3×Z/9 and Z/9×Z/9 are also 2-generated of 3-class 2 and both possess a
GI-automorphism and have the difference between their p-multiplicator rank and
nuclear rank equal to 2 making them pseudo-Schur σ-ancestor groups.

In practice, we are often able to exploit Theorem 2.13 to eliminate such groups
using an iterative process as follows. Given a known Schur σ-ancestor group G of
p-class c, one computes the immediate descendants and eliminates those which do
not satisfy the two criteria in the previous paragraph. One then computes the sum
of the c+ 1-measures of the groups that remain using the formula in this section.
If any pseudo-Schur σ-ancestor groups are present, then the formula will return a
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non-zero value even though the actual measure is 0. In this case, the computed sum
will exceed Measc(G). On the other hand, if the sum equals and does not exceed
the c-measure of G then one can conclude that no such groups are present and
the newly generated groups form a complete list of the Schur σ-ancestor groups
descended from G.
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Fig. 2.1 Descendants of G1
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2.5 Groups satisfying KIP

The KIP condition would seem to be quite restrictive, yet it applies in all the
cases where we have needed to compute Measc(G) and we have yet to find a Schur
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σ-ancestor group where it does not apply. Finite abelian p-groups certainly satisfy
KIP; we also have the following result.

Theorem 2.32 For all c ≥ 1, if G = Fc or G is an immediate descendant of Fc
possessing a GI-automorphism, then G satisfies KIP.

Proof If G = Fc then every epimorphism α : F → G factors through the natural
epimorphism F → Fc since G has p-class c. This gives rise to an epimorphism
from Fc to G which must be an isomorphism since G = Fc is finite. It follows that
kerα = Pc(F ) which is a characteristic subgroup of F and hence invariant under σ.

If G is an immediate descendant of Fc then every epimorphism α : F → G

factors through the natural epimorphism F → Fc+1 and Pc+1(F ) ⊆ kerα ⊆ Pc(F ).
Hence, all the kernels of epimorphisms from F to G will be invariant under σ if
and only if all the kernels of the epimorphisms from Fc+1 to G are invariant. As
noted earlier, if G possesses a σ-automorphism then there must exist at least one
epimorphism with kernel that is invariant under σ. We now show that this implies
all such kernels are invariant.

Observe that if R1 and R2 are two such kernels then the isomorphism F/R1
∼=

F/R2 lifts to an automorphism of F which maps R1 to R2. It follows that Aut(F )
acts transitively on the set of kernels. If we now consider the images of the kernels in
Pc(F )/Pc+1(F ) ⊆ Fc+1, then the same statement holds where Aut(F ) acts via the
restriction homomorphism ρc : Aut(F ) → Aut(Pc(F )/Pc+1(F )). The map ρc fac-
tors through ρ0 : Aut(F )→ Aut(F/P1(F )). This can be seen by using an inductive
argument to verify that ker ρ0 ⊆ ker ρi for i ≥ 0. The induction is straightforward
and uses the recursive definition of the central series {Pi(F )}i≥0. More details
can be found in the proof of a slightly more general statement appearing in [23,
Chapter VIII, Theorem 1.7].

Since ρ0(σ) is the inversion automorphism in Aut(F/P1(F )), it is clearly central
in the image of Aut(F ) under ρ0. It follows that the image of σ is central in the
image of Aut(F ) under ρi for all i. Combining this statement for i = c with the
transitivity of the action of Aut(F ) on the images of the kernels in Pc(F )/Pc+1(F ),
we see that if one image is invariant under σ then they all must be invariant. Pulling
this back to F , we see that if one kernel is invariant under σ then they all must
be invariant.

There are examples of finite p-groups with GI-automorphisms that do not
satisfy KIP. The five groups SmallGroup(243,i) for i = 51, ..., 55 are the smallest
ones. Indeed it appears that for any odd prime p there are exactly five groups of
order p5 failing to satisfy KIP, all of which have g = 3 generators but h = 6 and so
are not Schur σ-ancestor groups. Among the groups of order 729, there are exactly
58 such examples, of which 53 are 3-generated (and have h = 5, 6, or 8) and five
are 4-generated (and have h = 10). Therefore none of the examples of order 729
are Schur σ-ancestor groups.

3 Conjectures

In this section, we formulate our main heuristic assumption, then use the group-
theoretical results from the previous section to make precise conjectures about
the distribution of p-class tower groups of imaginary quadratic fields as well as
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the distribution of their maximal p-class c quotients. Recall that AK denotes the
p-Sylow subgroup of the class group of K.

The arithmetic input, as already noted by Koch and Venkov, is three-fold.
First, we observe that for an imaginary quadratic field K, complex conjugation
has a natural action on arithmetic objects attached to K. In particular, since Q
has trivial class group, aa is principal for every fractional ideal a of K, so complex
conjugation acts by inversion on AK . More generally, complex conjugation acts
as an involution on GK , and as inversion on Gab

K
∼= AK thanks to the functorial

properties of the Artin reciprocity map. The last two ingredients are the finiteness
of the class group, and the vanishing of the p-rank of the unit group of OK . The
former ensures that GK has finite abelianization (as does every one of its open
subgroups), and the latter that r(GK) = d(GK), by a theorem of Shafarevich [30].
Thus, GK is always a Schur σ-group.

For x > 0, let Fx denote the set of imaginary quadratic fields with absolute
value of discriminant not exceeding x, and for each natural number g, let Fx,g be
the subset of Fx consisting of those fields K having d(AK) = g. For pro-p groups
G and H, define chG(H) to be 1 if G ∼= H and 0 otherwise.

Definition 3.1 Let G be a finitely generated pro-p group with generator rank g.
We define

Freq(G) = lim
x→∞

∑
K∈Fx,g

chG(GK)∑
K∈Fx,g

1
,

assuming the limit exists. If G is also finite then, for c ≥ 1, we define

Freqc(G) = lim
x→∞

∑
K∈Fx,g

chG(GK/Pc(GK))∑
K∈Fx,g

1
,

assuming the limit exists.

Our main heuristic assumption is that the frequencies defined above exist and
are given by the group-theoretical measures introduced in Section 2 when G is a
finite p-group. More specifically, we make the following conjecture.

Conjecture 3.2 For every finite p-group G and c ≥ 1, we have

Freq(G) = Meas(G)

Freqc(G) = Measc(G).

In particular, Freq(G) 6= 0 if and only if G is a Schur σ-group, and Freqc(G) 6= 0
if and only if G is a Schur σ-ancestor group with p-class c or G is a Schur σ-group
with p-class at most c. When G satisfies KIP, the measures can be computed using
the formulas provided in Section 2.4.

Remark 3.3 The Cohen-Lenstra heuristics for p-class groups (see Conjecture 1.1)
follows from Conjecture 3.2 using Theorems 2.18 and 2.20.

As a consequence of Conjecture 3.2, we expect every finite Schur σ-group
(respectively Schur σ-ancestor group of p-class c) to occur as GK (respectively
GK/Pc(GK)) for a positive proportion of imaginary quadratic fields K.

We do not have a conjecture about the value of Freq(G) when G is an infinite
pro-p group. It is worth noting that there are infinite Schur σ-groups that we do not
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expect to arise as GK for any K. For example, the Sylow 3-subgroup of SL2(Z3)
considered in [1] is a 2-generator 2-relator pro-3 group with finite abelianization
and a GI-automorphism, but the tame case of the Fontaine-Mazur conjecture [16,
Conjecture 5a] implies that it does not arise as GK for any K. It is, however,
arbitrarily closely approximated by the finite Schur σ-groups in [1].

4 Index-p-Abelianization-Data (IPAD)

As discussed in Section 1, a complete calculation of GK is prohibitive for most
fields K. In order to make comparisons with data coming from number theory, it
will be useful to consider abelianizations of low index subgroups. To that end we
introduce the notion of IPAD and an associated measure. Thanks to the p-group
generation algorithm, and the theory developed in Section 2, we are able to prove
precise values for the measures of the most frequent IPADs when p = 3 and g = 2.
We will compare these values with the observed number-theoretical frequencies in
Section 5 (see Table 2).

Definition 4.1 The abelian group Z/q1 × · · · × Z/qd will be denoted [q1, . . . , qd].
Given a g-generated pro-p group G, its Index-p Abelianization Data (or IPAD for
short) will be the unordered (pg − 1)/(p− 1)-tuple of abelianizations of the index
p subgroups of G augmented by the abelianization of G itself; we always list the
latter group first. It will be denoted IPAD(G).

For example, the IPAD of the Schur σ-group SmallGroup(243,5) is

[[3, 3]; [3, 3, 3][3, 9]3],

indicating that its abelianization is [3, 3] and those of its four index 3 subgroups
are [3, 3, 3], [3, 9], [3, 9], and [3, 9].

Some other terminology that we will use in this section: for brevity, a descen-
dant of a Schur σ-ancestor group G is called a Schur descendant of G if it is also
a Schur σ-ancestor group. If it is an immediate descendant then we will call it a
Schur child. We will sometimes simply say that a group is Schur to indicate that
it is a Schur σ-ancestor group.

There are some things to note in working with IPADs (see also [9]). First,
considering g-generated pro-p groups for a fixed p and g, if H is a quotient of G, then
each entry of IPAD(H) is a quotient of a corresponding entry of IPAD(G). This
gives a partial order on IPADs and we say that IPAD(H) ≤ IPAD(G). Second, if
IPAD(G/Pn(G)) = IPAD(G/Pn−1(G)) (we call the IPAD settled), then IPAD(G) =
IPAD(G/Pn(G)). Finally, given a fixed IPAD I, one has IPAD(G) = I if and only
if IPAD(Gn) = I once n is sufficiently large (where the bound on n depends only
on I). This follows from the fact that if IPAD(G) = I and H is a subgroup of index
at most p then the quotient G/[H,H] is a finite p-group with p-class c bounded
above by logp |G/[H,H]|. One has Pc(G) ⊆ [H,H] and so it suffices to choose n to
be the largest value of c that can occur over all such H.

Definition 4.2 We define the measure of an IPAD I to be sum of Measn(G) over
all Schur σ-ancestor groups G of p-class at most n with IPAD(G) = I where n is
sufficiently large (see preceding paragraph).
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The measure of an IPAD is well defined since one can use Theorem 2.11 to show
that the defining sum does not change if n is made larger. In practice, the same
theorem often enables one to compute the measure of an IPAD by summing the
values of Measc(G) for groups G of p-class c where c is smaller than n depending
on how quickly the IPAD stabilizes in various parts of the tree of descendants.
This will be illustrated in the proof of the next theorem where we compute, in the
case g = 2 and p = 3, the measures of the most common IPADs.

Theorem 4.3 (1) IPAD [[3, 3]; [3, 3, 3][3, 9]3] has measure 128/729 ≈ 0.1756;

(2) IPAD [[3, 9]; [3, 3, 9]2[3, 27]2] has measure 256/2187 ≈ 0.1171;

(3) IPAD [[3, 3]; [3, 3, 3]3, [3, 9]] has measure 64/729 ≈ 0.0878;

(4) IPAD [[3, 3]; [3, 3, 3]2[3, 9]2] has measure 64/729 ≈ 0.0878;

(5) IPAD [[3, 3]; [3, 9]3[9, 27]] has measure 512/6561 ≈ 0.0780;

(6) IPAD [[3, 3]; [3, 3, 3][3, 9]2[9, 27]] has measure 512/6561 ≈ 0.0780;

(7) IPAD [[3, 27]; [3, 3, 27]2[3, 81]2] has measure 256/6561 ≈ 0.0390;

(8) IPAD [[3, 3]; [3, 3, 3]2[9, 27]2] has measure 2048/59049 ≈ 0.0347;

(9) IPAD [[3, 9]; [3, 3, 9][3, 9, 27][3, 27]2] has measure 640/19683 ≈ 0.0325;

(10) IPAD [[3, 3]; [3, 9]4] has measure 16/729 ≈ 0.0219;

(11) IPAD [[3, 9]; [3, 3, 9][3, 27]3] has measure 128/6561 ≈ 0.0195;

(12) IPAD [[3, 9]; [3, 3, 9][3, 27]2[9, 9, 9]] has measure 128/6561 ≈ 0.0195;

(13) IPAD [[3, 9]; [3, 3, 3, 3][3, 27]3] has measure 128/6561 ≈ 0.0195;

(14) IPAD [[3, 9]; [3, 9, 27][3, 27]3] has measure 1024/59049 ≈ 0.0173.

Proof We first note that all the groups below whose measures are needed satisfy
KIP allowing us to make use of the formulas derived in Section 2. Next, note that
the abelianizations of G1, G2, G3 (see Example 2.9) are [3, 3], [3, 9], [9, 9] respec-
tively. It follows that any IPAD with first entry [3, 3] has to come from descen-
dants of G1, and moreover that the first entry is settled, and so every descendant
of G1 has abelianization [3, 3]. Thus, for all the cases above starting with [3, 3],
we focus on descendants of G1. The reader may find it helpful to refer to the tree
in Figure 2.1 and discussion at the end of Section 2.4 before reading through the
computations which follow.

Using O’Brien’s p-group generation algorithm we compute that G1 has 11 chil-
dren of p-class 3. Of these, 7 have difference between p-multiplicator rank and
nuclear rank at most 2 (in fact exactly 2) and all of these turn out to have
a GI-automorphism. Call them H1, . . . , H7 in the order produced by O’Brien’s
algorithm as implemented in Magma [4], version 2.16. Of these, H3 and H5 are
terminal and so are Schur σ-groups. In the standard database they are Small-
Group(243,5) and SmallGroup(243,7) respectively. Their IPADs are those on lines
(1) and (4) above. We compute that Meas(H3) = Meas3(H3) = 128/729 and
Meas(H5) = Meas3(H5) = 64/729.

(1) and (4) follow by establishing that none of the Schur descendants of the
other Hi have these IPADs. This also shows that these groups are determined by
their IPADs. Note that the latter fact for SmallGroup(243,5) is already observed in
[1][Prop. 3.1 and Cor. 3.3]. In relation to (1), only IPAD(H4) ≤ IPAD(H3) (in fact
equal). The Schur child of H4 has IPAD including [9, 9] and so does not contribute
to (1). In relation to (4), we need to consider H1, which has the same IPAD as
H5. Only one child of H1, however, is Schur and its IPAD includes a [9, 9] and so
cannot contribute to (4). Thus, (1) and (4) are complete.
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The Schur child of H1 has 1602 children of p-class 4, of which 198 are Schur.
All of these have IPAD [[3, 3]; [3, 3, 3]2[9, 27]2] and nuclear rank between 2 and 4.
All the Schur children of 155 of these have the same IPAD, so are settled and
they contribute 2048/59049 to line (8) above. The Schur children of the other 43
include [27, 27], so do not count towards (8). The IPADs of the remaining Hi are
not less than or equal to this IPAD and so (8) is also complete.

The IPAD of H2 is that on line (3) and all its children have the same IPAD.
It therefore contributes Meas3(H2) = 64/729 to (3). None of the other Hi has
small enough IPAD that their descendants could have IPAD as in (3), and so (3)
is proven.

The IPADs of H6 and H7 are both that given in line (10). All the children
of H6 have IPADs involving [9, 9], whereas the IPADs of all the children of H7

are settled as (10). It follows that this IPAD has measure Meas3(H7) = 16/729,
proving (10).

As for cases (5) and (6), these come from further investigation of descendants
of H6 and H4 respectively. In each case, the group has a unique Schur child, which
then has 6 Schur children. These all have the respective IPADs. In each case, 3
of the 6 are terminal, and the other 3 each have one Schur child. Two of those
are settled, whereas the remaining group has larger IPAD. Thus 5 of the 6 Schur
grandchildren of each Hi, whose measures are each 64/729, contribute to (5) and
(6) respectively and the remaining grandchild, whose measure is 64/6561, does not.
Thus the IPADs in (5) and (6) each have measure 64/729− 64/6561 = 512/6561,
and (5) and (6) are proven.

IPADs (2), (7), (9), (11), (12), (13), and (14) above must come from descen-
dants of G2. This has 22 Schur children of p-class 3. We call these J1, . . . , J22
in accordance with O’Brien’s ordering. Only J10, J11, and J12 have IPADs less
than or equal to (in fact equal to) that of (2). The last two are terminal and the
unique Schur child of J10 has larger IPAD. Thus, the IPAD of (2) has measure
Meas3(J11) + Meas3(J12) = 256/2187, and (2) is proven.

The unique Schur child mentioned towards the end of the previous paragraph
has IPAD [[3, 9]; [3, 3, 9][3, 9, 9][3, 27]2]. A Schur descendant of G2 with IPAD in line
(9) or (12) has to descend from this child (by comparing the IPADs of the other
Ji). It has 9 Schur children, of which 6 have the IPAD of (9). The others have IPAD
[[3, 9]; [3, 3, 9][9, 9, 9][3, 27]2], which is incomparable with (9) but matches (12). Two
of these are terminal, the other settled, and so this allows us to obtain the measure
in (12). Of the remaining 6, there are 4 terminal groups, 1 settled, and 1 with a
unique Schur child with larger IPAD. Summing the measures of the first 5 groups
yields 640/19683 and establishes (9).

Case (7) can only arise from descendants of J5. It has 3 Schur children, with
the 2 terminal ones having the desired IPAD and the other having larger IPAD.
This establishes (7).

Case (11) arises from descendants of J14 and J17, all of which are settled, and
so its measure is the sum of their measures. Case (13) similarly arises from J13
and J16, which are settled.

As for (14), this has to come from descendants of J15 and J18. Each has measure
64/6561 and their trees of descendants are identical. Each has a unique Schur
child and 4 Schur grandchildren. Of these, 1 is terminal and 2 others settled with
the desired IPAD. The children of the remaining group have larger IPAD, so we
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subtract its measure, 64/59049. Since 2(64/6561 − 64/59049) = 1024/59049, (14)
is proven.

Note that none of the 14 given IPADs have first entry greater than or equal to
[9, 9] and so no descendants of G3 will have one of these IPADs. Since Meas2(G3) =
1/81 = 0.0123, the IPADs produced by its descendants will all have measure
smaller than that of any of the 14 given IPADs.

Remark 4.4 1. As demonstrated in the proof of the theorem, the measure of an
IPAD is usually computed as the sum of the measures of terminal and settled
groups. If the sum only involves terminal groups, then it determines a finite list
of groups having that IPAD. Sometimes, such as for lines (1) and (4) above, it
determines a unique group. Now consider the IPAD in line (7), which corresponds
to the two terminal Schur children of J5. An imaginary quadratic number field
with that IPAD (such as Q(

√
−17399)) therefore has one of these two groups as

the Galois group of its 3-class tower, the first cases of a non-abelian 3-class tower
of a quadratic field having 3-class length 4. This group has derived length 2. We
have not found an IPAD consisting only of terminal groups of finite derived length
exceeding 2; however, see [11] where additional arithmetic constraints are used to
achieve this.

2. In [24], Koch and Venkov proved that if a 2-generated Schur σ-group is
finite, then it has relations at depth 3 and k where k ∈ {3, 5, 7} in the p-Zassenhaus
filtration. McLeman [26] conjectures that the group is finite if and only if both
relations have depth 3. Computing dimensions of the first three factors of the
Jennings series, we observe that every Schur descendant of G1 has its relations at
this depth. The apparent combinatorial explosion in descendants of H1 then casts
doubt on the “if” part of McLeman’s conjecture.

As for Schur descendants of G2, those not having both relations at depth 3 are
precisely those descended from J6, . . . , J9, J19, . . . , J22. The combinatorial explosion
in descendants of these groups lends support to the “only if” part of McLeman’s
conjecture.

3. One might ask for the probability that a 2-generated Schur σ-group is finite.
Searching through the tree in the case p = 3, we find 90 descendants of G1 that
are Schur σ-groups of 3-class at most 11, 144 descendants of G2 that are Schur
σ-groups of 3-class at most 8, and 222 descendants of G3 that are Schur σ-groups
of 3-class at most 7. Their combined measure is slightly over 0.8533 and so, in this
sense, there is at least an 85.33% probability that a 2-generated Schur σ-group is
finite when p = 3.

As for an upper bound, it is natural, in the spirit of Golod and Shafarevich, to
conjecture that “large” IPADs will correspond only to infinite groups, but one must
be careful. Extending the above census slightly, we find that J1 has Schur σ-group
descendants of 3-class 9 and order 318 with IPAD [[3, 243]; [3, 3, 3, 81], [3, 729]3].
Thus, having a rank 4 subgroup of index 3 (the highest rank possible by comparison
with the free group) is not sufficient to imply that the Schur σ-group is infinite.

5 Computations

As evidence for our conjectures we have collected numerical data in the case of the
smallest odd prime p = 3. In particular, we have obtained IPADs for all imaginary
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quadratic fields K with 3-class group AK of rank 2 and discriminant dK satisfying
|dK | < 108 assuming GRH.

For an imaginary quadratic field K of discriminant −d, with 3-class group
of rank 2, the four unramified cubic extensions F of K can be computed using
results of Fung and Williams [18]. In each case, the maximal real subfield F+

of F is a cubic field of discriminant −d. Fung and William’s work allows one to
compute a defining polynomial for such fields efficiently. Indeed, one finds many
such polynomials, and we can then distinguish the four isomorphism classes of
fields by using PARI/GP’s program nfisisom. It is then straightforward to compute
a defining polynomial for F = F+(

√
−d) and its class group. Taken together with

the 3-class group of K, these give IPAD(GK).

Originally, we had attempted to compute the unramified extensions of K and
their class groups directly but there was a large amount of variation in the run-
ning times and this approach proved to be very slow. The current approach was
suggested in [25]. There, the author refers to an object called the Transfer Target
Type (TTT) of K. The notion of TTT is almost the same as our IPAD except
that the 3-class group of the base field is not included.

Computations were carried out using the symbolic algebra package PARI/GP [28],
version 2.5.4 running on 2 × 2.66 GHz 6-Core Intel Xeon processors running OS
X 10.8.5. The computations were run in parallel across multiple cores by dividing
up the discriminants into subintervals and searching through a space of potential
defining polynomials for the cubic extensions using the coefficient bounds in [18].
Although this created some redundancy, the parallelization limited the real world
running time to the maximum length across all of the intervals. Roughly 890 core
hours were used in total.

The class group computations were also double-checked using Magma [4], ver-
sion 2.19-5. A tiny number of discrepancies in the results of the two packages
were detected (for less than 30 out of around 1.85 million fields F ). These have
disappeared since updating to PARI/GP [28], version 2.7.3.

Table 5.1 Census of the most common IPADs.

I1 I3.2 I10 I32 I100
[3, 3]; [3, 3, 3] [3, 9]3 667 2270 7622 25737 83353
[3, 9]; [3, 3, 9]2 [3, 27]2 406 1497 4974 16821 55310
[3, 3]; [3, 3, 3]2 [3, 9]2 269 1069 3625 12314 41398
[3, 3]; [3, 3, 3]3 [3, 9] 297 1056 3619 12324 40968
[3, 3]; [3, 9]3 [9, 27] 276 973 3190 11042 36458
[3, 3]; [3, 3, 3] [3, 9]2 [9, 27] 249 889 3113 10739 35923
[3, 27]; [3, 3, 27]2 [3, 81]2 103 463 1615 5620 18422
[3, 3]; [3, 3, 3]2 [9, 27]2 112 384 1293 4593 15541
[3, 9]; [3, 3, 9] [3, 9, 27] [3, 27]2 101 367 1317 4559 15037
[3, 3]; [3, 9]4 94 323 1019 3284 10426
[3, 9]; [3, 3, 9] [3, 27]3 75 254 844 2914 9335
[3, 9]; [3, 3, 3, 3] [3, 27]3 64 233 799 2734 9000
[3, 9]; [3, 3, 9] [3, 27]2 [9, 9, 9] 66 229 786 2740 8955
[3, 9]; [3, 9, 27] [3, 27]3 61 232 728 2447 8165
Other IPADs (331 types) 350 1505 5741 21222 73634

Total 3190 11744 40285 139090 461925
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Table 5.2 Relative proportions of the most common IPADs.

I1 I3.2 I10 I32 I100 Predicted
[3, 3]; [3, 3, 3] [3, 9]3 0.2091 0.1933 0.1892 0.1850 0.1804 0.1756
[3, 9]; [3, 3, 9]2 [3, 27]2 0.1273 0.1275 0.1235 0.1209 0.1197 0.1171
[3, 3]; [3, 3, 3]2 [3, 9]2 0.0843 0.0910 0.0900 0.0885 0.0896 0.0878
[3, 3]; [3, 3, 3]3 [3, 9] 0.0931 0.0899 0.0898 0.0886 0.0887 0.0878
[3, 3]; [3, 9]3 [9, 27] 0.0865 0.0829 0.0792 0.0794 0.0789 0.0780
[3, 3]; [3, 3, 3] [3, 9]2 [9, 27] 0.0781 0.0757 0.0773 0.0772 0.0778 0.0780
[3, 27]; [3, 3, 27]2 [3, 81]2 0.0323 0.0394 0.0401 0.0404 0.0399 0.0390
[3, 3]; [3, 3, 3]2 [9, 27]2 0.0351 0.0327 0.0321 0.0330 0.0336 0.0347
[3, 9]; [3, 3, 9] [3, 9, 27] [3, 27]2 0.0317 0.0313 0.0327 0.0328 0.0326 0.0325
[3, 3]; [3, 9]4 0.0295 0.0275 0.0253 0.0236 0.0226 0.0219
[3, 9]; [3, 3, 9] [3, 27]3 0.0235 0.0216 0.0210 0.0210 0.0202 0.0195
[3, 9]; [3, 3, 3, 3] [3, 27]3 0.0201 0.0198 0.0198 0.0197 0.0195 0.0195
[3, 9]; [3, 3, 9] [3, 27]2 [9, 9, 9] 0.0207 0.0195 0.0195 0.0197 0.0194 0.0195
[3, 9]; [3, 9, 27] [3, 27]3 0.0191 0.0198 0.0181 0.0176 0.0177 0.0173
Other IPADs (331 types) 0.1097 0.1282 0.1425 0.1526 0.1594 0.1717

We now present a summary of the data collected. We have broken down the
interval of discriminants dK with 1 < |dK | < 108 into 5 nested subintervals Ij
where Ij = Fj·106,2 = {dK | 1 < −dK < j · 106 and d(AK) = 2} and we have
selected values of j so that the upper bound for each successive subinterval is
scaled by a factor of

√
10 ≈ 3.2.

The first table is a census of the most common IPADs. The second lists their
relative proportions obtained by dividing each entry in the first by the correspond-
ing column total. In addition, the last column of the second table lists the values
predicted by our conjectures as computed in Theorem 4.3. Note that in lines 1
and 3 of Table 2, the IPAD determines the isomorphism type of the group, namely
SmallGroup(243,5) and SmallGroup(243,7) respectively. Thus, on these two lines,
the predicted and computed frequencies for individual non-abelian groups are be-
ing compared, providing a direct test of our heuristics.

6 Appendix: On the nucleus of certain p-groups – by Jonathan Blackhurst

In this appendix we3 prove the proposition that if the Schur multiplier of a finite
non-cyclic p-group G is trivial, then the nucleus of G is trivial. Our proof of the
proposition will use the facts that a p-group has trivial nucleus if and only if it
has no immediate descendants and that a finite group has trivial Schur multiplier
if and only if it has no non-trivial stem extensions, so we will begin by recalling
a few definitions. For the definition of the lower p-central series and p-class of a
group, we refer to section 2 of the article.

Definition 6.1 Let G be a finite p-group with minimal number of generators d =
d(G) and presentation F/R where F is the free pro-p group on d generators. The
p-covering group G∗ of G is F/R∗ where R∗ is the topological closure of Rp[F,R],

3 Jonathan Blackhurst
1037 E Millbrook Way, Bountiful, UT 84010 USA
E-mail: jblackhurst@gmail.com
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and the nucleus of G is Pc(G
∗) where c is the p-class of G. The p-multiplicator of

G is defined to be the subgroup R/R∗ of G∗. The Schur multiplier M(G) of G is
defined to be (R ∩ [F, F ])/[F,R]. A group C is a stem extension of G if there is an
exact sequence

1→ K → C → G→ 1

where K is contained in the intersection of the center and derived subgroups of C.

We will need to recall some basic properties of Schur multipliers and p-covering
groups. First, for a finite group G, the largest stem extension of G has size
|G||M(G)|. Hence, the Schur multiplier of a finite group G is trivial if and only if
G admits no non-trivial stem extensions. Second, every elementary abelian central
extension of G is a quotient of G∗. By this we mean that if H is a d-generated p-
group with elementary abelian subgroup Z contained in the center of H such that
H/Z is isomorphic to G, then H is a quotient of G∗. Every immediate descendant
of G is an elementary abelian central extension of G, hence is a quotient of G∗.
A subgroup M of the p-multiplicator of G is said to supplement the nucleus if M
and the nucleus together generate the p-multiplicator, that is MPc(G

∗) = R/R∗.
The immediate descendants of G can be put in one-to-one correspondence with
equivalence classes of proper subgroups M of the p-multiplicator of G that sup-
plement the nucleus. The equivalence relation comes from the action of the outer
automorphism group of G∗, so M and N are equivalent if there is an outer auto-
morphism σ of G∗ such that σ(M) = N . The reader is referred to O’Brien [27] for
more details.

With these preliminaries in place, we can show that the non-cyclic hypothesis
in our proposition is necessary by considering the finite cyclic p-group G = Z/pcZ.
The Schur multiplier is trivial since in this case F = Z so [F, F ] is trivial. On the
other hand, the nucleus is non-trivial since in this case F = Zp and R = pcZp so
R∗ = pc+1Zp and G∗ = F/R∗ = Z/pc+1Z which implies that Pc(G

∗) = pcG∗ is
non-trivial.

Proposition 6.2 Let G be a finite non-cyclic p-group. If the Schur multiplier of G is

trivial, then the nucleus of G is trivial.

Proof We will prove the following equivalent assertion: if the nucleus of G is non-
trivial, then G has a non-trivial stem extension. We divide the problem into two
cases depending on whether the abelianization of G has stabilized; that is, whether
the abelianization of an immediate descendant of G can have larger order than the
abelianization Gab of G. We will see that this is equivalent to whether or not
Gab ' (G/Pc−1(G))ab where G has p-class c.
CASE 1: Suppose that Gab ' (G/Pc−1(G))ab and that the nucleus of G is non-
trivial. Since the nucleus is non-trivial, G has an immediate descendant C and we
have the following diagram

1→ K → C → G→ 1

where K = Pc(C). Note that since C/Pk(C) ' G/Pk(G) for k ≤ c, we have that
(C/Pc−1(C))ab ' (C/K)ab. If Pc−1(C) were not contained within the derived
subgroup C′ of C, then its image Pc−1(C) in C/C′ would be non-trivial. Since
K = Pc−1(C)p[C,Pc−1(C)], the image K of K would be Pc−1(C)p and thus would
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be stricly smaller than Pc−1(C). Now (C/H)ab ' (C/C′)/H for any H / C, so,
replacing H with K and Pc−1(C), we see that (C/Pc−1(C))ab would be smaller
than (C/K)ab, contradicting that they are isomorphic. Thus Pc−1(C) < C′, hence
K < C′, so C is a stem extension of G. Since G has a non-trivial stem extension,
its Schur multiplier is non-trivial.

CASE 2: Suppose that Gab 6' (G/Pc−1(G))ab. Let

1→ R→ F → G→ 1

be a presentation of G where F is free pro-p group on d generators and d is the
minimal number of generators of G. Induction and the argument in the preceding
case shows that (G/Pk(G))ab is strictly smaller than (G/Pk+1(G))ab for any k < c.
Furthermore, since the image Pk+1(G) of Pk+1(G) in G/G′ is Pk(G)p, there must

be a generator b of F such that the image of bp
c−1

in G lies outside G′. Now
consider R∗ = Rp[F,R] and let G∗ = F/R∗ be the p-covering group of G. We have
the following diagrams:

1→ R∗ → F → G∗ → 1

and

1→ R/R∗ → G∗ → G→ 1

We now show that the image of bp
c

in Pc(G
∗) is non-trivial so G has non-trivial

nucleus. Let G have abelianization isomorphic to Z/pn1Z× · · ·×Z/pndZ. Consider
the topological closure S of R ∪ [F, F ]. Then F/S is isomorphic to Gab. The group
Z/pn1+1Z×· · ·×Z/pnd+1Z is an elementary abelian central extension of F/S. This
implies that bp

c

lies outside S∗ = Sp[F, S]. Since R ⊂ S, we have that R∗ ⊂ S∗.
Hence bp

c

lies outside R∗ so it has non-trivial image in G∗. Since its image lies
inside Pc(G

∗), this group is non-trivial.

We have shown that G has non-trivial nucleus. Now let a be a generator of
F independent of b—i.e., one that doesn’t map to the same element as b in the
elementary abelianization of F—and let M be a proper subgroup of R/R∗ that

contains the image of bp
c

[a, bp
c−1

] and that supplements the subgroup of R/R∗

generated by the image of bp
c

(so M and the image of bp
c

generate R/R∗). Now
consider C = G∗/M . Letting K = (R/R∗)/M , we have the following diagram

1→ K → C → G→ 1

Since G∗ is a central extension of G and C is a quotient of G∗, C is also a central ex-
tension of G. Furthermore, |K| = p. Now let M be the subgroup of F corresponding
to M under the lattice isomorphism theorem. Then we have the following diagram:

1→M → F → C → 1

Since M does not contain bp
c

, its image in C is non-trivial. Since G has p-class c,
the image of bp

c

is trivial in G. Also since |K| = p, the image of the powers of bp
c

constitute K. Since M does contain bp
c

[a, bp
c−1

], the image of bp
c

in C equals the

image of [bp
c−1

, a], hence K lies in the derived subgroup of C, so C is a non-trivial
stem extension of G. Consequently, the Schur multiplier of G is non-trivial.



34 Boston-Bush-Hajir

References

1. L. Bartholdi and M.R. Bush, Maximal unramified 3-extensions of imaginary quadratic
fields and SL2(Z3), J. Number Theory 124 (2007), no. 1, 159–166.

2. H. U. Besche, B. Eick, and E. A. O’Brien, A millennium project: constructing small groups,
Internat. J. Algebra Comp., 12 (2002), no. 5, 623–644.

3. M. Bhargava, The density of discriminants of quartic rings and fields Ann. of Math. (2)
162 (2005), no. 2, 10311063.

4. W. Bosma, J. J. Cannon, C. Playoust, The Magma algebra system. I. The user language,
J. Symbolic Comput., 24 (1997), 235–265.

5. N. Boston, Random pro-p groups and random Galois groups, Annales des Sciences
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