1. A car braked with a constant deceleration of 16 feet per second per second, producing skid marks measuring 200 feet before coming to a stop. How fast was the car traveling when the brakes were first applied?

2. (a) Evaluate the right Riemann sum for \(f(x) = x^2 - x \) on \([0, 2]\) with four subintervals of uniform length. Explain with the aid of a diagram what the Riemann sum represents.

(b) Use the definition of the definite integral as a limit to calculate the value of the integral \(\int_0^2 (x^2 - x) \, dx \).

(c) Use the Fundamental Theorem of Calculus to check your answer to part (b).

(d) Draw a diagram to explain the geometric meaning of the integral in part (b).

3. Evaluate each of the following expressions.

 (a) \(\int_0^{\pi/2} \frac{d}{dx} \left(\frac{\sin x}{2} \cos \frac{x}{3} \right) \, dx \)

 (b) \(\frac{d}{dx} \int_0^{\pi/2} \left(\frac{\sin x}{2} \cos \frac{x}{3} \right) \, dx \)

 (c) \(\frac{d}{dx} \int_x^{\pi/2} \left(\sin \frac{t}{2} \cos \frac{t}{3} \right) \, dt \)

4. (a) Find the average value of the function \(f(x) = x^2 \sqrt{1 + x^3} \) on the interval \([0, 2]\).

(b) Given that the average value of the even function \(g(x) \) on \([0, 4]\) is \(\frac{9}{2} \), compute \(\int_0^4 g(x) \, dx \).

(c) Find the value of \(c \) guaranteed by the Mean Value Theorem for Integrals for the function \(f(x) = x^2 + 2 \) on \([2, 5]\).
5. (a) Find a lower bound and an upper bound for \(\int_{1}^{3} \sqrt{x^2 + 3} \, dx \) using the extrema of \(\sqrt{x^2 + 3} \) on \([1, 3]\).

(b) Evaluate \(\int_{0}^{1} (x + \sqrt{1 - x^2}) \, dx \) by interpreting it in terms of areas.

6. (a) Find a function \(f \) and a number \(a \) such that \(\int_{a}^{x} \frac{f(t)}{t^2} \, dt = 2x^4 - 32. \)

(b) If \(F(x) = \int_{1}^{x^2} f(t) \, dt \) and \(f(t) = \int_{1}^{t^4} \sqrt{y} \, dy \), compute \(F''(1) \).

7. Let \(g(x) = \int_{0}^{x} f(t) \, dt \), where \(f \) is the function shown in the graph below.

(a) At what values do the local extrema values of \(g \) occur?

(b) Where does \(g \) attain its absolute maximum value?

(c) On what interval(s) is \(g \) increasing?

(d) On what intervals is \(g \) concave downward?