# Notes on Lab #8

For this lab, you will turn in your models (Excel spreadsheet or
Vensim model) and your writeup as usual.
## Area through Monte Carlo Simulation

For this part you will use Monte Carlo simulation to compute the area (integral)
of a function over a given interval. In order to verify your simulation, you
could use one of the arbitrarily generated integrable functions from
integrals.wolfram.com as a test case.
(You may have to keep hitting the **RANDOM EXAMPLE** button till you get a
function that's easy to work with.) Or if you remember enough calculus, just use
an integral familiar to you.
You can use Excel or Vensim to do the simulation, but in either case you should
use a sufficient number of points (10,000 should be enough) and report:
- the function you used
- the interval over which you computed the area
- a plot of the function over that interval
- the number of points in your simulation
- the analytical form of the integral from Wolfram
- the area from the simulation
- the analytical
solution from the Fundamental Theorem of Calculus (p. 62 in Shiflet & Shiflet)
- the relative error.

For reporting the function and its integral, you may
way to use Microsoft Equation Editor in Word (Insert /Object / Microsoft Equation),
which formats the symbols nicely. If you use Vensim and it doesn't allow you
to display a sufficient number of values to see the final relative error, include
a plot of how this error decreases as you use more points. If you use Excel, you can
generate 10,000 random values as follows:
- Put
**=RAND()** in the first row of a column
- Select the whole column by clicking on the header (letter) at the top
- In the
**Home** tab, click the **Fill** button at right, and select **Down**
- Scroll down to row 10,001 and delete values from there to the end of the column

## Random Walks

Use Vensim to build a model to generate
data to make an average-distance-traveled plot like the one on p. 401. For each
number of steps, take the average over five random seeds. You should also turn
in a sample plot of the walk itself, by doing an X/Y graph similar to the one you did
for the skydiving and predator/prey models. You can look at a limited number
of steps (10 - 20) to save time and simplify the the X/Y plot. If you're good
at Excel, you may be able to use
this spreadsheet instead of Vensim, but the trick will be to figure
out how to generate the X/Y plot from the animation. If you have time, you
might try a "biased random walk" where there's a higher probability of moving
in a certain direction.