Genetic Algorithms in the Real World
Part III: The NSGA-II Algorithm

CSCI 315: Artificial Intelligence
Simon D. Levy
Fall 2007
Setting the Stage for NSGA-II

• Tuning parameters (for fitness sharing) are hard to work with.

• Lack of elitism (keeping best-ranked members) can lead to sub-optimal solutions.

• (Naive) nondominated sorting is $O(M N^3)$, where N is population size.
Fitness Sharing without Tuning Parameters

- Crowding Distance \(d_i = \frac{(w + h)}{2} \)
- \(d_0 = d_1 = \infty \)
Crowding-Distance Assignment

crowding-distance-assignment(\mathcal{I})

\begin{align*}
\bar{l} &= |\mathcal{I}| \\
\text{for each } i, \text{ set } \mathcal{I}[i]_{\text{distance}} &= 0 \\
\text{for each objective } m \\
\mathcal{I} &= \text{sort}(\mathcal{I}, m) \\
\mathcal{I}[1]_{\text{distance}} &= \mathcal{I}[\bar{l}]_{\text{distance}} = \infty \\
\text{for } i = 2 \text{ to } (\bar{l} - 1) \\
\mathcal{I}[i]_{\text{distance}} &= \mathcal{I}[i]_{\text{distance}} + (\mathcal{I}[i+1].m - \mathcal{I}[i-1].m)/(f^m_{\text{max}} - f^m_{\text{min}})
\end{align*}

number of solutions in \mathcal{I}
initialize distance

sort using each objective value
so that boundary points are always selected
for all other points
Using Crowding for Selection

- Favor rank over crowding as selection criterion
- If ranks are same, favor less crowded solutions
- Define a partial order $<_n$ on solutions:

 $i <_n j$ if $(\text{rank}_i < \text{rank}_j)$

 or $((\text{rank}_i = \text{rank}_j)$

 and $(d_i > d_j)$
Elitism through “Incest”

• Problem with generational approach: no guarantee that children are fitter than parents

• So, given parent population P_t and child population Q_t, create “super-population” $R_t = P_t \cup Q_t$ ($t =$ time, generation)

• Then sort R_t according to $<_n$ to get P_{t+1}
Graphically

Fig. 2. NSGA-II procedure.
Reducing $O(M N^3)$ Sorting to $O(M N^2)$: Fast Nondominated Sort

- First step: for each solution p, compute
 - Domination count $n_p = \# \text{ of solutions that dominate } p$
 - Set of solutions S_p that p dominates
 - This computation is $O(M N)$ for each solution p, so for N such solutions, it’s $O(M N^2)$
Fast Nondominated Sort

• Next: for each solution p with $n_p = 0$, visit each member q of its set S_p and reduce q’s domination count by one.

• In doing so, if for any q the domination count n_q becomes zero, we put q in a separate set Q, the second front

• Repeat above two steps with Q, until all fronts are identified
Example

<table>
<thead>
<tr>
<th>p</th>
<th>n_p</th>
<th>S_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>D, E, F, G, H</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>D, E, F, G, H</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>D, E, F, G, H</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>G, H</td>
</tr>
<tr>
<td>E</td>
<td>3</td>
<td>G, H</td>
</tr>
<tr>
<td>F</td>
<td>3</td>
<td>G, H</td>
</tr>
<tr>
<td>G</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>p</th>
<th>n_p</th>
<th>S_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>D, E, F, G, H</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>D, E, F, G, H</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>D, E, F, G, H</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>G, H</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>G, H</td>
</tr>
<tr>
<td>F</td>
<td>2</td>
<td>G, H</td>
</tr>
<tr>
<td>G</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>p</th>
<th>n_p</th>
<th>S_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>D, E, F, G, H</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>D, E, F, G, H</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>D, E, F, G, H</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>G, H</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>G, H</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>G, H</td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>p</th>
<th>n_p</th>
<th>S_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>D, E, F, G, H</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>D, E, F, G, H</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>D, E, F, G, H</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>G, H</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>G, H</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>G, H</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>n_p</td>
<td>S_p</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>D, E, F, G, H</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>D, E, F, G, H</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>D, E, F, G, H</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>G, H</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>G, H</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>G, H</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Second Front
Fast Nondominated Sort: Complexity

- First step is $O(M N^2)$
- Second step $O(N^2)$
- So overall algorithm is $O(M N^2)$
Fast Nondominated Sort

\[
\text{fast-non-dominated-sort}(P)
\]

for each \(p \in P \)

\[
S_p = \emptyset \quad n_p = 0
\]

for each \(q \in P \)

\[
\begin{align*}
\text{if } (p \prec q) & \text{ then } \\
S_p &= S_p \cup \{q\} \quad n_p = n_p + 1
\end{align*}
\]

\[
\text{else if } (q \prec p) & \text{ then }
\]

\[
S_p = S_p \quad n_p = n_p
\]

\[
\text{if } n_p = 0 & \text{ then }
\]

\[
F_{\text{rank}} = 1 \quad F_1 = F_1 \cup \{p\}
\]

\[i = 1\]

\[Q = \emptyset\]

while \(F_i \neq \emptyset \)

\[
Q = \emptyset
\]

for each \(p \in F_i \)

\[
\text{for each } q \in S_p
\]

\[
\begin{align*}
q_{\text{rank}} &= i + 1 \\
Q &= Q \cup \{q\}
\end{align*}
\]

\[i = i + 1\]

\[F_i = Q\]

If \(p \) dominates \(q \)

Add \(q \) to the set of solutions dominated by \(p \)

Increment the domination counter of \(p \)

\(p \) belongs to the first front

Initialize the front counter

Used to store the members of the next front

\(q \) belongs to the next front
Altogether: NSGA-II
(One Generation)

\[R_t = P_t \cup Q_t \]
\[\mathcal{F} = \text{fast-non-dominated-sort}(R_t) \]
\[P_{t+1} = \emptyset \text{ and } i = 1 \]
\[\text{until } |P_{t+1}| + |\mathcal{F}_i| \leq N \]
\[\text{crowding-distance-assignment}(\mathcal{F}_i) \]
\[P_{t+1} = P_{t+1} \cup \mathcal{F}_i \]
\[i = i + 1 \]
\[\text{Sort}(\mathcal{F}_i, \prec_n) \]
\[P_{t+1} = P_{t+1} \cup \mathcal{F}_i[1:(N - |P_{t+1}|)] \]
\[Q_{t+1} = \text{make-new-pop}(P_{t+1}) \]
\[t = t + 1 \]

combine parent and offspring population
\[\mathcal{F} = (\mathcal{F}_1, \mathcal{F}_2, \ldots), \text{ all nondominated fronts of } R_t \]

until the parent population is filled
calculate crowding-distance in \(\mathcal{F}_i \)
include \(i \)th nondominated front in the parent pop
check the next front for inclusion
sort in descending order using \(\prec_n \)
choose the first \((N - |P_{t+1}|) \) elements of \(\mathcal{F}_i \)
use selection, crossover and mutation to create
a new population \(Q_{t+1} \)
increment the generation counter