Top-Down Parsing

- **Goal:**
 - Find a leftmost derivation for an input string, or
 - Construct a parse tree for the input starting from the root and creating nodes of the parse tree in preorder (parent, then children)
- Discussed deterministic special case – predictive parsing – in 2.4.
- General case is nondeterministic (backtracking)
- Of more theoretical than practical interest

Recursive-Descent Parsing

- Requires backtracking
- Consider grammar

 \[\begin{align*}
 S & \rightarrow cAd \\
 A & \rightarrow ab \mid a \\
 \end{align*} \]
- Parse input string \(w = cad \):

 \[\begin{array}{c}
 c \\
 a \\
 d \\
 \end{array} \]

Recursive-Descent Parsing

- Requires backtracking
- Consider grammar

 \[\begin{align*}
 S & \rightarrow cAd \\
 A & \rightarrow ab \mid a \\
 \end{align*} \]
- Parse input string \(w = cad \):

 \[\begin{array}{c}
 c \\
 a \\
 d \\
 \end{array} \]
Recursive-Descent Parsing

- Requires backtracking
- Consider grammar
 \[S \rightarrow cAd \]
 \[A \rightarrow ab \mid a \]
- Parse input string \(w = cad \):

```
S
\( \rightarrow \)
c A d
\( \rightarrow \)
c a d
↓
```

Recursive-Descent Parsing

- Requires backtracking
- Consider grammar
 \[S \rightarrow cAd \]
 \[A \rightarrow ab \mid a \]
- Parse input string \(w = cad \):

```
S
\( \rightarrow \)
c A d
\( \rightarrow \)
c a d
↓
```

Recursive-Descent Parsing

- Requires backtracking
- Consider grammar
 \[S \rightarrow cAd \]
 \[A \rightarrow ab \mid a \]
- Parse input string \(w = cad \):

```
S
\( \rightarrow \)
c A d
\( \rightarrow \)
c a d
↓
```

Recursive-Descent Parsing

- Requires backtracking
- Consider grammar
 \[S \rightarrow cAd \]
 \[A \rightarrow ab \mid a \]
- Parse input string \(w = cad \):

```
S
\( \rightarrow \)
c A d
\( \rightarrow \)
c a d
↓
```

Recursive-Descent Parsing

- Requires backtracking
- Consider grammar
 \[S \rightarrow cAd \]
 \[A \rightarrow ab \mid a \]
- Parse input string \(w = cad \):

```
S
\( \rightarrow \)
c A d
\( \rightarrow \)
c a d
↓
```
Recursive-Descent Parsing

* Requires backtracking
* Consider grammar

 \[S \rightarrow cAd \]

 \[A \rightarrow ab | a \]

* Parse input string \(w = cad \):

 \[
 S \quad c \quad A \quad d \\
 \quad a \quad b \quad FAIL \\
 c \quad a \quad d \\
 \]

Recursive-Descent Parsing

* Requires backtracking
* Consider grammar

 \[S \rightarrow cAd \]

 \[A \rightarrow ab | a \]

* Parse input string \(w = cad \):

 \[
 S \quad c \quad A \quad d \\
 \quad c \quad a \quad d \\
 \]

Recursive-Descent Parsing

* Requires backtracking
* Consider grammar

 \[S \rightarrow cAd \]

 \[A \rightarrow ab | a \]

* Parse input string \(w = cad \):

 \[
 S \quad c \quad A \quad d \\
 \quad c \quad a \quad d \\
 \]
Recursive-Descent Parsing

- Requires backtracking
- Consider grammar
 \[S \rightarrow cAd \]
 \[A \rightarrow ab | a \]
- Parse input string \(w = cad \):

\[
\begin{array}{c|c|c|c}
\text{symbol} & S & A & d \\
\hline
\text{c} & & & \\
\text{a} & & & \\
\text{d} & & & \\
\text{a} & & & \\
\text{d} & & & \\
\end{array}
\]

SUCCEED

Nonrecursive Predictive Parsing

- Maintain stack explicitly, instead of relying on runtime support for recursion.
- Components
 - Input buffer: \(w $ \)
 - Stack: terminals and nonterminals
 - Parsing table:
 - nonterminal \times input symbol \rightarrow production
 - Output stream: derivation

Nonrecursive Predictive Parsing

- Table \(M \) determines action based on stack symbol \(X \) and input symbol \(a \).
- Initial stack is start symbol on top of $.
- Possibilities are
 1. \(X = a = $ \): halt successfully
 2. \(X = a \neq $ \): pop \(X \) and advance input pointer
 3. \(X = \text{nonterminal} \): Consult table entry \(M[X, a] \).
 If empty, report error. Else pop \(X \) and push table entry.

Predictive Parsing Algorithm

set input pointer \(\pi \) to first symbol of \(w $ \\
repeat
 \text{Let } X \text{ be the top stack symbol and } a \text{ the symbol pointed to by } \pi \text{.}
 \text{if } X \text{ is a terminal or } $ \text{ then}
 \text{if } X = a \text{ then}
 \text{pop } X \text{ from the stack and advance } \pi
 \text{else error ()}
 \text{else /* } X \text{ is a nonterminal */}
 \text{if } M[X, a] = X \rightarrow Y_1 Y_2 \ldots Y_k \text{ then begin}
 \text{pop } X \text{ from the stack}
 \text{push } Y_k Y_{k-1} \ldots Y_1 \text{ onto the stack with } Y_1 \text{ on top}
 \text{output the production } X \rightarrow Y_1 Y_2 \ldots Y_k
 \text{end}
 \text{else error ()}
 \text{end error ()}
until X = $ /* stack is empty */
Predictive Parsing Example

- Grammar (note elimination of left recursion):
 \[E \to T E'
 E' \to + T E' | \in
 T \to F T'
 T' \to \ast F T' | \in
 F \to (E) | \text{id} \]

- Input: \text{id} + \text{id} * \text{id}

- Table:

| Nonterminal | Input Symbol | \in | \ast | (| | |
|-------------|--------------|-----|-----|---|---|
| \text{E} | T | \in | \ast | (| | |
| \text{T} | F | \in | \ast | (| | |
| \text{F} | (| \in | \ast | (| | |

FIRST and FOLLOW

- Recall FIRST from Chapter 2: \text{FIRST(\alpha)} is set of terminals that begin strings derived from \alpha.
- Together with FOLLOW, helps us build parse table from grammar.
- \text{FOLLOW(A)} is set of terminals \ast that can appear immediately to the right of \ast \text{A} in some sentential form; i.e., \ast \text{A} \Rightarrow \ast \text{A} \ast \beta.

Computing FIRST

1. If \text{X} is terminal, then \text{FIRST(X)} is \{X\}.
2. If \text{X} \Rightarrow \in \ast is a production, add \in \ast to \text{FIRST(X)}.
3. If \text{X} \Rightarrow Y_1 \ldots Y_k is a production, place \ast to \text{FIRST(X)} if for some i, \ast is in \text{FIRST(Y_i)} and \in \ast is in all of \text{FIRST(Y_1) \ldots FIRST(Y_k)}; that is, for all j \neq i, \text{Y_j} \Rightarrow \ast \in \ast. If \in \ast is in \text{FIRST(Y_i)} for all j = 1, 2, \ldots, k, then add \in \ast to \text{FIRST(X)}. For example, everything in \text{FIRST(Y_1')} is surely in \text{FIRST(X)}. If \text{Y_i} does not derive \in \ast, then we add nothing more to \text{FIRST(X)}, but if \text{Y_i} \Rightarrow \ast \in \ast, then we add \text{FIRST(Y_1')} and so on.

Computing FOLLOW

1. Place \$ in \text{FOLLOW(S)}, where S is the start symbol.
2. If there is a production \text{A} \Rightarrow \ast \text{B}, then everything in \text{FIRST(B)} except for \in \ast is placed in \text{FOLLOW(A)}.
3. If there is a production \text{A} \Rightarrow \ast \text{B} or a production \text{A} \Rightarrow \ast \text{B} \ast \text{C} \ast \text{D} \ast \text{E} \ast \text{F}, where \text{FIRST(B)} contains \in \ast (i.e., \ast \Rightarrow \in \ast \beta), then everything in \text{FOLLOW(A)} is in \text{FOLLOW(B)}.

Exercise: Compute FIRST, FOLLOW for nonterminals in grammar.
Construction of Predictive Parse Tables

Input: Grammar G
Output: Parsing table M

1. For each production $A \rightarrow \alpha$ of the grammar, do steps 2 and 3.
2. For each terminal a in FIRST(α), add $A \rightarrow \alpha$ to $M[A, a]$.
3. If ε is in FIRST(α) and ε is in FOLLOW(A), add $A \rightarrow \alpha$ to $M[A, \varepsilon]$.
4. Make each undefined entry of M be error.

LL(1) Grammars

- Ambiguous grammars will have more than one entry $M[A, a]$ for some nonterminal A, terminal a.
- E.g., ambiguous if / then / else grammar:

 $S \rightarrow a\varepsilon \varepsilon$ [a]
 $S \rightarrow \varepsilon$ [a]
 $S \rightarrow \varepsilon$ [b]

- This grammar produces a table M containing entry $M[S', \epsilon] = \{S' \rightarrow \epsilon, S' \rightarrow \epsilon S\}$ (because FOLLOW(S') = \{\epsilon, S\}).

LL(1) Grammars

- A grammar without such duplicate entries is called LL(1).
- First L means “read input Left to right”.
- Second L means “build Leftmost derivation”.
- 1 means one symbol of lookahead in input to make decisions.
- No ambiguous or left-recursive grammar can be LL(1).
- More technically: Grammar G is LL(1) iff for $A \rightarrow \alpha | \beta$,
 1. For no terminal a do both α and β derive strings beginning with a.
 2. At most one of α and β can derive the empty string.
 3. If $\beta \Rightarrow^* \varepsilon$, then α does not derive any string beginning with a terminal in FOLLOW(A).
- So what to do when M has multiply-defined entries?
 - Can try to make G LL(1) by eliminating left recursion, and left factoring the result – may produce an LL(1) grammar.
 - Won’t work for some grammars, like our if / then / else example.
 - For such grammars, we may be able to eliminate all but one of the multiple entries; e.g., change $M[S', \epsilon] = \{S' \rightarrow \epsilon, S' \rightarrow \epsilon S\}$ to $M[S', \epsilon] = S' \rightarrow \epsilon S$.
 - But this must be done on a case-by case basis; there are no universal rules.